Non-universal Quantum Dynamics of Ultracold Chemical Reactions of Polar Alkali-dimer Molecules with Alkali-metal Atoms: Li($^2$S) +NaLi($a^3\Sigma^+$) $\to$ Na($^2$S) + Li$_2$($a^3\Sigma_u^+$)

Ultracold chemical reactions of weakly bound triplet-state alkali-metal dimer molecules have recently attracted much experimental interest. We use rigorous quantum scattering calculations based on a newly constructed accurate ab initio potential energy surface to explore the chemical reaction of spin-polarized NaLi( a 3 Σ + ) molecules and Li( 2 S) atoms to form Li 2 ( a 3 Σ + u ) and Na( 2 S), a candidate for non-universal dynamics. The reaction is exothermic, and proceeds readily at ultralow temperatures with the ratio of elastic to reactive collision rate coefficients γ < 0 . 011 at 1 µ K. Significantly, we observe strong sensitivity of the total reaction rate to small variations of the three-body part of the Li 2 Na interaction at short range, a signature of highly non-universal reaction dynamics. The breakdown of universality occurs despite the deep and barrierless potential energy surface. We attribute this to a relatively small number of open Li 2 ( a 3 Σ + u ) product channels that are populated in the reaction as compared to the chemical reactions of covalently bound ground-state alkali dimers studied before. The present result provides the first signature of highly non-universal dynamics seen in rigorous quantum reactive scattering calculations on an

[1]  P. Julienne,et al.  Spin-Conservation Propensity Rule for Three-Body Recombination of Ultracold Rb Atoms. , 2021, Physical review letters.

[2]  W. Ketterle,et al.  Control of reactive collisions by quantum interference , 2021, Science.

[3]  J. Hutson,et al.  Complexes formed in collisions between ultracold alkali-metal diatomic molecules and atoms , 2021, New Journal of Physics.

[4]  K. Ni,et al.  Bimolecular Chemistry in the Ultracold Regime. , 2021, Annual review of physical chemistry.

[5]  B. Kendrick Quantum reactive scattering calculations for the cold and ultracold Li + LiNa → Li2 + Na reaction. , 2021, The Journal of chemical physics.

[6]  N. Balakrishnan,et al.  Non-adiabatic quantum interference in the ultracold Li + LiNa → Li2 + Na reaction. , 2021, Physical chemistry chemical physics : PCCP.

[7]  T. Tscherbul,et al.  Quantum Spin State Selectivity and Magnetic Tuning of Ultracold Chemical Reactions of Triplet Alkali-Metal Dimers with Alkali-Metal Atoms. , 2021, Physical review letters.

[8]  Hua Guo,et al.  Precision test of statistical dynamics with state-to-state ultracold chemistry , 2020, Nature.

[9]  P. Brumer,et al.  Complete Quantum Coherent Control of Ultracold Molecular Collisions. , 2020, Physical review letters.

[10]  P. Brumer,et al.  Coherent control of reactive scattering at low temperatures: Signatures of quantum interference in the differential cross sections for F+ H2 and F+HD , 2020, 2007.11454.

[11]  Hua Guo,et al.  Photo-excitation of long-lived transient intermediates in ultracold reactions , 2020, Nature Physics.

[12]  M. Musiał,et al.  Potential-energy curve for the a3Σu+ state of a lithium dimer with Slater-type orbitals , 2020, 2006.16415.

[13]  W. Ketterle,et al.  Collisional cooling of ultracold molecules , 2019, Nature.

[14]  T. Tscherbul,et al.  Magnetic tuning of ultracold barrierless chemical reactions , 2019, Physical Review Research.

[15]  B. Kendrick Non-Adiabatic Ultracold Quantum Reactive Scattering of Hydrogen with Vibrationally Excited HD(v=5-9). , 2019, The journal of physical chemistry. A.

[16]  K. Ni,et al.  Direct observation of bimolecular reactions of ultracold KRb molecules , 2019, Science.

[17]  Gaoren Wang,et al.  Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions , 2019, Physical Review A.

[18]  V. Aquilanti,et al.  Quantum Dynamics and Kinetics of the F + H2 and F + D2 Reactions at Low and Ultra-Low Temperatures , 2019, Front. Chem..

[19]  S. Kotochigova,et al.  Universal Scattering of Ultracold Atoms and Molecules in Optical Potentials , 2019, Atoms.

[20]  Jian-Wei Pan,et al.  Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions , 2018, Science.

[21]  B. Kendrick Non-adiabatic quantum reactive scattering in hyperspherical coordinates. , 2018, The Journal of chemical physics.

[22]  T. Tscherbul,et al.  Atom-molecule collisions, spin relaxation, and sympathetic cooling in an ultracold spin-polarized Rb(S2)−SrF(Σ+2) mixture , 2018, Physical Review A.

[23]  N. Balakrishnan,et al.  Long-lived complexes and signatures of chaos in ultracold K 2 +Rb collisions , 2017, 1709.07419.

[24]  Jun Ye,et al.  Cold molecules: Progress in quantum engineering of chemistry and quantum matter , 2017, Science.

[25]  N. Balakrishnan,et al.  Universality and chaoticity in ultracold K+KRb chemical reactions , 2017, Nature Communications.

[26]  W. Ketterle,et al.  Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments. , 2017, Physical review letters.

[27]  J. D’Incao Few-body physics in resonantly interacting ultracold quantum gases , 2017, 1705.10860.

[28]  N. Balakrishnan,et al.  Symmetry and the geometric phase in ultracold hydrogen-exchange reactions. , 2017, The Journal of chemical physics.

[29]  N. Balakrishnan Perspective: Ultracold molecules and the dawn of cold controlled chemistry. , 2016, The Journal of chemical physics.

[30]  N. Balakrishnan,et al.  Geometric Phase Appears in the Ultracold Hydrogen Exchange Reaction. , 2015, Physical review letters.

[31]  R. Côté,et al.  Effect of nuclear spin symmetry in cold and ultracold reactions: D + para/ortho-H2 , 2015, 1505.03172.

[32]  N. Balakrishnan,et al.  Ultracold chemistry with alkali-metal-rare-earth molecules , 2014, 1410.8095.

[33]  R. Krems,et al.  Tuning Bimolecular Chemical Reactions by Electric Fields. , 2014, Physical review letters.

[34]  P. Julienne,et al.  Cold atomic and molecular collisions: approaching the universal loss regime , 2014, 1412.5114.

[35]  T. Tscherbul,et al.  Ultracold spin-polarized mixtures of ^{2}Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling , 2014 .

[36]  W. Ketterle,et al.  Deviation from universality in collisions of ultracold 6Li2 molecules. , 2013, Physical review letters.

[37]  P. Julienne,et al.  Ultracold molecules under control! , 2012, Chemical reviews.

[38]  M. Mayle,et al.  Statistical Aspects of Ultracold Resonant Scattering , 2012, 1203.6868.

[39]  R. Côté,et al.  A case study in ultracold reactive scattering: D + H2. , 2011, Physical chemistry chemical physics : PCCP.

[40]  P. Julienne,et al.  Universal ultracold collision rates for polar molecules of two alkali-metal atoms. , 2011, Physical chemistry chemical physics : PCCP.

[41]  S. Kotochigova Dispersion interactions and reactive collisions of ultracold polar molecules , 2010, 1003.2672.

[42]  J. Bohn,et al.  Strong dependence of ultracold chemical rates on electric dipole moments , 2010, 1001.5062.

[43]  J. Ye,et al.  Dipolar collisions of polar molecules in the quantum regime , 2010, Nature.

[44]  P. Julienne,et al.  Universal rate constants for reactive collisions of ultracold molecules. , 2009, Physical review letters.

[45]  James F. Babb,et al.  Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms , 2009, 0902.3929.

[46]  D. Herschbach Molecular collisions, from warm to ultracold. , 2009, Faraday discussions.

[47]  R. Krems Cold controlled chemistry. , 2008, Physical chemistry chemical physics : PCCP.

[48]  Marko T. Cvitas,et al.  Interactions and dynamics in Li+Li2 ultracold collisions. , 2007, The Journal of chemical physics.

[49]  P. Soldán,et al.  Molecular collisions in ultracold atomic gases , 2006, physics/0610219.

[50]  P. Soldán,et al.  Ultracold Rb-OH collisions and prospects for sympathetic cooling. , 2006, Physical review letters.

[51]  P. Weck,et al.  Importance of long-range interactions in chemical reactions at cold and ultracold temperatures , 2006 .

[52]  R. Krems,et al.  Controlling electronic spin relaxation of cold molecules with electric fields. , 2006, Physical review letters.

[53]  Marko T. Cvitas,et al.  Ultracold collisions involving heteronuclear alkali metal dimers. , 2005, Physical review letters.

[54]  P. Soldán,et al.  Ultracold quantum dynamics: Spin-polarized K+ K 2 collisions with three identical bosons or fermions , 2004, cond-mat/0411158.

[55]  Marko T. Cvitas,et al.  Ultracold Li + Li2 collisions: bosonic and fermionic cases. , 2004, Physical review letters.

[56]  G. A. Parker,et al.  Accurate quantum calculations on three-body collisions in recombination and collision-induced dissociation. I. Converged probabilities for the H+Ne2 system , 2002 .

[57]  Marko T. Cvitas,et al.  Quantum dynamics of ultracold Na+ Na2 collisions. , 2002, Physical review letters.

[58]  E. Heller,et al.  No-sticking effect and quantum reflection in ultracold collisions , 2001 .

[59]  N. Balakrishnan,et al.  Chemistry at Ultracold Temperatures , 2001 .

[60]  E. F. Hayes,et al.  HYPERSPHERICAL SURFACE FUNCTIONS FOR NONZERO TOTAL ANGULAR MOMENTUM. I. ECKART SINGULARITIES , 1999 .

[61]  S. Rolston,et al.  SPIN POLARIZATION AND QUANTUM-STATISTICAL EFFECTS IN ULTRACOLD IONIZING COLLISIONS , 1999 .

[62]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[63]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[64]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[65]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. tests on H+H2 and D+H2 , 1987 .

[66]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[67]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[68]  J. Renuncio,et al.  Combination rules for two‐body van der Waals coefficients , 1980 .

[69]  Jr John H. Moore Investigation of the Wigner Spin Rule in Collisions of N + with He, Ne, Ar, N 2 , and O 2 , 1973 .

[70]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .