Quantum asymmetric cryptography with symmetric keys

Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.

[1]  G. Guo,et al.  Active phase compensation of quantum key distribution system , 2008 .

[2]  Li Yang,et al.  Quantum Public-Key Cryptosystem Based on Classical NP-Complete Problem , 2003, quant-ph/0310076.

[3]  Debbie W. Leung,et al.  Quantum vernam cipher , 2000, Quantum Inf. Comput..

[4]  Keisuke Tanaka,et al.  Quantum Public-Key Cryptosystems , 2000, CRYPTO.

[6]  Takeshi Koshiba,et al.  Computational Indistinguishability Between Quantum States and Its Cryptographic Application , 2004, Journal of Cryptology.

[7]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[8]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.

[11]  Takeshi Koshiba Security Notions for Quantum Public-Key Cryptography , 2007 .

[12]  Qiaoyan Wen,et al.  Comment on “Quantum key distribution for d -level systems with generalized Bell states” , 2005, quant-ph/0505053.

[13]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[14]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[15]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[16]  E. Bagan,et al.  Optimal scheme for estimating a pure qubit state via local measurements. , 2002, Physical review letters.

[17]  Fei Gao,et al.  Comment on ``Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers'' , 2005 .

[18]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[19]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[20]  Yong-Sheng Zhang,et al.  Quantum key distribution via quantum encryption , 2000, quant-ph/0011034.

[21]  ZENGGuihua Encrypting Binary Bits via Quantum Cryptography , 2004 .

[22]  Qiao-Yan Wen,et al.  Comparing the efficiencies of different detect strategies in the ping-pong protocol , 2008 .

[23]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[24]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[25]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[26]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[27]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.

[28]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[29]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[30]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[32]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[33]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[34]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[35]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[36]  V. Karimipour,et al.  Quantum secret sharing based on reusable GHZ states as secure carriers , 2002, quant-ph/0204124.

[37]  Georgios M. Nikolopoulos,et al.  Erratum: Applications of single-qubit rotations in quantum public-key cryptography [Phys. Rev. A 77, 032348 (2008)] , 2008 .

[38]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[39]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[40]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[41]  Vahid Karimipour,et al.  Quantum key distribution for d -level systems with generalized Bell states , 2002 .

[42]  Fen-Zhuo Guo,et al.  Consistency of shared reference frames should be reexamined , 2008 .

[43]  Qiaoyan Wen,et al.  Comment II on "Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers" (3 pages) , 2005, quant-ph/0505052.

[44]  G. M. Nikolopoulos,et al.  Applications of single-qubit rotations in quantum public-key cryptography , 2008, 0801.2840.

[45]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.