Monotone Variable–Metric Algorithm for Linearly Constrained Nonlinear Programming

A new method for linearly constrained nonlinear programming is proposed. This method follows affine scaling paths defined by systems of ordinary differential equations and it is fully parallelizable. The convergence of the method is proved for a nondegenerate problem with pseudoconvex objective function. In practice, the algorithm works also under more general assumptions on the objective function. Numerical results obtained with this computational method on several test problems are shown.

[1]  M. Todd,et al.  Mathematical Developments Arising from Linear Programming , 1990 .

[2]  On the convergence of the projected gradient method , 1993 .

[3]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[4]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[5]  Yinyu Ye,et al.  An extension of Karmarkar's projective algorithm for convex quadratic programming , 1989, Math. Program..

[6]  Susan W. Palocsay,et al.  Optimizing the sum of linear fractional functions , 1992 .

[7]  P. Wolfe On the convergence of gradient methods under constraint , 1972 .

[8]  R. Saigal Linear Programming: A Modern Integrated Analysis , 1995 .

[9]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[10]  Masakazu Muramatsu,et al.  Global Convergence of a Long-Step Affine Scaling Algorithm for Degenerate Linear Programming Problems , 1995, SIAM J. Optim..

[11]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[12]  James E. Falk,et al.  A Successive Underestimation Method for Concave Minimization Problems , 1976, Math. Oper. Res..

[13]  M. C. Recchioni,et al.  A Quadratically Convergent Method for Linear Programming , 1991 .

[14]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[15]  K. Swarup Letter to the Editor-Linear Fractional Functionals Programming , 1965 .

[16]  Y. Almogy,et al.  A Class of Fractional Programming Problems , 1971, Oper. Res..

[17]  Philip B. Zwart,et al.  Nonlinear Programming: Counterexamples to Two Global Optimization Algorithms , 1973, Oper. Res..