Graph classes and forbidden patterns on three vertices

This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.

[1]  Michel Habib,et al.  Maximum Induced Matching Algorithms via Vertex Ordering Characterizations , 2017, Algorithmica.

[2]  Juraj Stacho,et al.  Vertex Ordering Characterizations of Graphs of Bounded Asteroidal Number , 2015, J. Graph Theory.

[3]  L. Mirsky A Dual of Dilworth's Decomposition Theorem , 1971 .

[4]  Vojtech Rödl,et al.  On the Computational Complexity of Ordered Subgraph Recognition , 1995, Random Struct. Algorithms.

[5]  Maria Chudnovsky Berge trigraphs , 2006, J. Graph Theory.

[6]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[7]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..

[8]  José R. Correa,et al.  Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line: Algorithms and Complexity , 2013, Discret. Comput. Geom..

[9]  S. Mitchell Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .

[10]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[11]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[12]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[13]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[14]  Dale Skrien,et al.  A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs , 1982, J. Graph Theory.

[15]  Peter L. Hammer,et al.  The splittance of a graph , 1981, Comb..

[16]  E. S. Wolk The comparability graph of a tree , 1962 .

[17]  Laurent Feuilloley,et al.  Local certification in distributed computing: error-sensitivity, uniformity, redundancy, and interactivity. (Certification locale en calcul distribué : sensibilité aux erreurs, uniformité, redondance et interactivité) , 2018 .

[18]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[19]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[20]  David R. Wood,et al.  Stacks, Queues and Tracks: Layouts of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[21]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[22]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[23]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[24]  Dominique de Werra,et al.  Partitioning cographs into cliques and stable sets , 2005, Discret. Optim..

[25]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[26]  Bojan Mohar,et al.  Ordering without Forbidden Patterns , 2014, ESA.

[27]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[28]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[29]  Derek G. Corneil,et al.  A Unified View of Graph Searching , 2008, SIAM J. Discret. Math..

[30]  Michel Habib,et al.  Chordal Graphs and Their Clique Graphs , 1995, WG.

[31]  José R. Correa,et al.  Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line: Algorithms and Complexity , 2013, Discrete & Computational Geometry.

[32]  G. Dirac On rigid circuit graphs , 1961 .

[33]  Michel Habib,et al.  A new graph parameter to measure linearity , 2017, COCOA.

[34]  A. M. Murray The strong perfect graph theorem , 2019, 100 Years of Math Milestones.

[35]  Farhad Shahrokhi,et al.  The book crossing number of a graph , 1996 .

[36]  Jean Cardinal,et al.  Intersection Graphs of Rays and Grounded Segments , 2016, WG.

[37]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[38]  Michel Habib,et al.  On some simplicial elimination schemes for chordal graphs , 2009, Electron. Notes Discret. Math..

[39]  Michel Habib,et al.  Complexity issues for the sandwich homogeneous set problem , 2011, Discret. Appl. Math..

[40]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[41]  Frank Pok Man Chu,et al.  A simple linear time certifying LBFS-based algorithm for recognizing trivially perfect graphs and their complements , 2008, Inf. Process. Lett..

[42]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[43]  Richard Ryan Williams,et al.  Subcubic Equivalences between Path, Matrix and Triangle Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[44]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[45]  Peng Li,et al.  A Four-Sweep LBFS Recognition Algorithm for Interval Graphs , 2014, Discret. Math. Theor. Comput. Sci..

[46]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[47]  Dieter Kratsch,et al.  Linear-time certifying recognition algorithms and forbidden induced subgraphs , 2007, Nord. J. Comput..

[48]  Ekkehard Köhler,et al.  On the Power of Graph Searching for Cocomparability Graphs , 2016, SIAM J. Discret. Math..

[49]  Andreas Brandstädt,et al.  Maximum Induced Matchings for Chordal Graphs in Linear Time , 2008, Algorithmica.

[50]  D. Seinsche On a property of the class of n-colorable graphs , 1974 .

[51]  G. Handler Minimax Location of a Facility in an Undirected Tree Graph , 1973 .

[52]  P Kalaivani,et al.  Chordal Graphs and Their Clique Graphs , 2014 .

[53]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[54]  Michel Habib,et al.  A new LBFS-based algorithm for cocomparability graph recognition , 2017, Discret. Appl. Math..

[55]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[56]  P. Damaschke,et al.  Forbidden Ordered Subgraphs , 1990 .

[57]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[58]  David R. Wood,et al.  Characterisations of intersection graphs by vertex orderings , 2004, Australas. J Comb..

[59]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[60]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[61]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[62]  Christopher Thraves,et al.  p-Box: A new graph model , 2015, Discret. Math. Theor. Comput. Sci..

[63]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[64]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[65]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..