Design and Analysis of Dispersion Engineered Rib Waveguides for On-Chip Mid-Infrared Supercontinuum

A highly nonlinear optical rib waveguide structure with various core-shape profiles in As2Se3 chalcogenide glass has been reported for on-chip supercontinuum sources in the mid-infrared region. The reported rib waveguide structure offers the ultrabroadband mid-infrared spectral broadening spanning 1000–10 900 and 1000–11 880 nm for rectangular-core and triangular-core profiles, respectively, using 497-fs hyperbolic laser pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, such an ultrabroadband supercontinuum spectrum has been reported for the first time using the triangular-core profile of waveguide in chalcogenide glass. The reported rib waveguide devices generating mid-infrared supercontinuum will be applicable in various important applications such as security, noninvasive early disease detection, defense, and spectroscopy.

[1]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[2]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[3]  B. M. A. Rahman,et al.  Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. , 2015, Optics express.

[4]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[5]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[6]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[7]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[8]  Bora Ung,et al.  Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. , 2010, Optics express.

[9]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[10]  Dan Zhao,et al.  Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber. , 2011, Optics express.

[11]  Shuangchen Ruan,et al.  Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile , 2013 .

[12]  Goëry Genty,et al.  SUPERCONTINUUM GENERATION IN THE MID-INFRARED , 2006 .

[13]  W. Yuan 2-10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber , 2013 .

[14]  Robert S. Windeler,et al.  Coulomb and carrier-activation dynamics of resonantly excited InAs/GaAs quantum dots in two-color pump-probe experiments , 2003 .

[15]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[16]  Sergei K. Turitsyn,et al.  Optical spectral broadening and supercontinuum generation in telecom applications , 2006 .

[17]  Ming Yan,et al.  An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide , 2014, Nature Communications.

[18]  Chinlon Lin,et al.  Self-phase modulation in silica optical fibers (A) , 1978 .

[19]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[20]  Trevor M. Benson,et al.  Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation , 2014 .

[21]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[22]  Gunther Roelkens,et al.  Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[23]  Ravindra Kumar Sinha,et al.  Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis , 2017 .

[24]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[25]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[26]  Ole Bang,et al.  IR microscopy utilizing intense supercontinuum light source. , 2012, Optics express.

[27]  Stuart D. Jackson,et al.  Ultrafast pulses from a mid-infrared fiber laser. , 2015, Optics letters.

[28]  Ajeet Kumar,et al.  Design and modelling of dispersion-engineered rib waveguide for ultra broadband mid-infrared supercontinuum generation , 2017 .

[29]  Ravindra Kumar Sinha,et al.  Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis , 2015 .

[30]  Yi Yu,et al.  Mid-infrared supercontinuum generation in chalcogenides , 2013 .

[31]  David J. Moss,et al.  Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide , 2014 .

[32]  C. Madsen,et al.  Optical characterization of a-As2S3 thin films prepared by magnetron sputtering , 2010 .

[33]  Benjamin J. Eggleton,et al.  Supercontinuum generation in chalcogenide glass waveguides , 2010 .

[34]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[35]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[36]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[37]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[38]  J. Price,et al.  Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. , 2014, Optics letters.

[39]  R. Soref,et al.  Modelling of Supercontinuum Generation in the Germanium-on-Silicon Waveguided Platform , 2015, Journal of Lightwave Technology.

[40]  Ravindra Kumar Sinha,et al.  Broadband Mid-Infrared Supercontinuum Spectra Spanning 2–15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber , 2015, Journal of Lightwave Technology.

[41]  J. Świderski,et al.  Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier , 2013 .

[42]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[43]  Lionel C. Kimerling,et al.  Nonlinear characterization of GeSbS chalcogenide glass waveguides , 2016, Scientific Reports.

[44]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[45]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.