Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi

Peroxisomes are eukaryotic organelles important for the metabolism of long-chain fatty acids. Here we show that in numerous fungal species, several core enzymes of glycolysis, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (PGK), reside in both the cytoplasm and peroxisomes. We detected in these enzymes cryptic type 1 peroxisomal targeting signals (PTS1), which are activated by post-transcriptional processes. Notably, the molecular mechanisms that generate the peroxisomal isoforms vary considerably among different species. In the basidiomycete plant pathogen Ustilago maydis, peroxisomal targeting of Pgk1 results from ribosomal read-through, whereas alternative splicing generates the PTS1 of Gapdh. In the filamentous ascomycete Aspergillus nidulans, peroxisomal targeting of these enzymes is achieved by exactly the opposite mechanisms. We also detected PTS1 motifs in the glycolytic enzymes triose-phosphate isomerase and fructose-bisphosphate aldolase. U. maydis mutants lacking the peroxisomal isoforms of Gapdh or Pgk1 showed reduced virulence. In addition, mutational analysis suggests that GAPDH, together with other peroxisomal NADH-dependent dehydrogenases, has a role in redox homeostasis. Owing to its hidden nature, partial peroxisomal targeting of well-studied cytoplasmic enzymes has remained undetected. Thus, we anticipate that further bona fide cytoplasmic proteins exhibit similar dual targeting.

[1]  A. Weber,et al.  A peroxisomal carrier delivers NAD⁺ and contributes to optimal fatty acid degradation during storage oil mobilization. , 2012, The Plant journal : for cell and molecular biology.

[2]  M. Feldbrügge,et al.  A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis , 2001, Molecular microbiology.

[3]  T. Gabaldón Peroxisome diversity and evolution , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  I. J. van der Klei,et al.  PEX Genes in Fungal Genomes: Common, Rare or Redundant , 2006, Traffic.

[5]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[6]  F. Winston,et al.  A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. , 1987, Gene.

[7]  H. Tabak,et al.  Formation of peroxisomes: present and past. , 2006, Biochimica et biophysica acta.

[8]  Peter Philippsen,et al.  Contribution of the Endoplasmic Reticulum to Peroxisome Formation , 2005, Cell.

[9]  C. Neuvéglise,et al.  Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[10]  B. Warscheid,et al.  A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa , 2010, Proteomics.

[11]  S Subramani,et al.  A conserved tripeptide sorts proteins to peroxisomes , 1989, The Journal of cell biology.

[12]  R. Kahmann,et al.  Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. , 1996, Molecular & general genetics : MGG.

[13]  Gregory Jedd,et al.  Fungal evo-devo: organelles and multicellular complexity. , 2011, Trends in cell biology.

[14]  Sarah Calvo,et al.  Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis , 2006, Nature.

[15]  R. Erdmann,et al.  Peroxisomal protein translocation. , 2010, Biochimica et biophysica acta.

[16]  S. Gould,et al.  Identification of Peroxisomal Acyl-CoA Thioesterases in Yeast and Humans* , 1999, The Journal of Biological Chemistry.

[17]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[18]  B. Poolman,et al.  Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells , 2009, Functional & Integrative Genomics.

[19]  Sebastian Maurer-Stroh,et al.  Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. , 2003, Journal of molecular biology.

[20]  M. Bölker,et al.  Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis. , 2008, Molecular biology of the cell.

[21]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[22]  W. Visser,et al.  Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes. , 2012, FEMS yeast research.

[23]  Davies,et al.  Present and Past , 1981 .

[24]  Pavel V Baranov,et al.  Recoding: translational bifurcations in gene expression. , 2002, Gene.

[25]  I. Herskowitz,et al.  The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif , 1990, Cell.

[26]  J. Hiltunen,et al.  The Saccharomyces cerevisiae Peroxisomal 2,4-Dienoyl-CoA Reductase Is Encoded by the Oleate-inducible GeneSPS19 * , 1997, The Journal of Biological Chemistry.

[27]  H. Westerhoff,et al.  The danger of metabolic pathways with turbo design. , 1998, Trends in biochemical sciences.

[28]  I. Graham Seed storage oil mobilization. , 2008, Annual review of plant biology.

[29]  P. Baudhuin,et al.  Peroxisomes (microbodies and related particles). , 1966, Physiological reviews.

[30]  F. Theodoulou,et al.  The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. , 2006, Biochimica et biophysica acta.

[31]  Barbara M. Bakker,et al.  Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes , 2008, Proceedings of the National Academy of Sciences.

[32]  H. Tabak,et al.  The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl‐CoA under in vivo conditions. , 1995, The EMBO journal.

[33]  J. Hiltunen,et al.  Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. , 2006, Biochimica et biophysica acta.

[34]  J. Heitman,et al.  Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans , 2006, Eukaryotic Cell.

[35]  J. König,et al.  A reverse genetic approach for generating gene replacement mutants in Ustilago maydis , 2004, Molecular Genetics and Genomics.

[36]  H. Waterham,et al.  Metabolite transport across the peroxisomal membrane. , 2007, The Biochemical journal.

[37]  R. Kahmann,et al.  Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus , 1996 .

[38]  Frédéric Bringaud,et al.  Metabolic functions of glycosomes in trypanosomatids. , 2006, Biochimica et biophysica acta.

[39]  P. Lazarow,et al.  Peroxisome biogenesis. , 2001, Annual review of cell and developmental biology.

[40]  P. Lazarow The import receptor Pex7p and the PTS2 targeting sequence. , 2006, Biochimica et biophysica acta.

[41]  C. Brocard,et al.  Peroxisome targeting signal 1: is it really a simple tripeptide? , 2006, Biochimica et biophysica acta.