Mechanically Robust, Self‐Healable, and Highly Stretchable “Living” Crosslinked Polyurethane Based on a Reversible CC Bond

[1]  L. Leibler,et al.  Vinylogous Urethane Vitrimers , 2015 .

[2]  I. Ward Processing, structure and properties of oriented polymers , 1988 .

[3]  Wei Cao,et al.  Visible‐Light‐Induced Self‐Healing Diselenide‐Containing Polyurethane Elastomer , 2015, Advanced materials.

[4]  Hans-Dieter Beckhaus,et al.  Towards an Understanding of the Carbon‐Carbon Bond , 1980 .

[5]  M. Rong,et al.  A thermally remendable and reprocessable crosslinked methyl methacrylate polymer based on oxygen insensitive dynamic reversible C–ON bonds , 2016 .

[6]  Stuart J. Rowan,et al.  Inherently Photohealable and Thermal Shape-Memory Polydisulfide Networks. , 2013, ACS macro letters.

[7]  M. Rong,et al.  Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages , 2014 .

[8]  Yoshifumi Amamoto,et al.  Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. , 2012, Angewandte Chemie.

[9]  P. R. Pinnock,et al.  Mechanical and optical anisotropy in polyethylene terephthalate fibres , 1964 .

[10]  Mpf Mark Pepels,et al.  Self-healing systems based on disulfide–thiol exchange reactions , 2013 .

[11]  E. Suljovrujic,et al.  The influence of orientation on the radiation-induced crosslinking/oxidative behavior of different PEs , 2007 .

[12]  Christopher J. Cramer,et al.  Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. , 2015, Journal of the American Chemical Society.

[13]  Jian Xu,et al.  Oxime-Based and Catalyst-Free Dynamic Covalent Polyurethanes. , 2017, Journal of the American Chemical Society.

[14]  K. Becker,et al.  Aromatic Pinacols as Polymerization Initiators , 1971 .

[15]  Krzysztof Matyjaszewski,et al.  Self‐Healing of Covalently Cross‐Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light , 2012, Advanced materials.

[16]  A. R. D. Luzuriaga,et al.  Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites , 2016 .

[17]  Weixiang Sun,et al.  Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol-Gel Transitions. , 2012, ACS macro letters.

[18]  N. Cabrera,et al.  The mechanical properties of unidirectional all-polypropylene composites , 2006 .

[19]  Nabarun Roy,et al.  Double dynamic self-healing polymers: supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif: Double dynamic self-healing polymers , 2014 .

[20]  Ning Zheng,et al.  Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. , 2016, Angewandte Chemie.

[21]  M. Rong,et al.  A thermally remendable epoxy resin , 2009 .

[22]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Zhenan Bao,et al.  A Stiff and Healable Polymer Based on Dynamic‐Covalent Boroxine Bonds , 2016, Advanced materials.

[24]  Zhibin Guan,et al.  Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds. , 2015, Journal of the American Chemical Society.

[25]  Qiang Wu,et al.  Bio‐Inspired High‐Performance and Recyclable Cross‐Linked Polymers , 2013, Advanced materials.

[26]  Ji-tai Li,et al.  Reductive coupling of aromatic aldehydes and ketones in sunlight , 2003 .

[27]  A. Matsumoto,et al.  Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization , 1998 .

[28]  M. Pilling,et al.  Observation of equilibration in the system atomic hydrogen + ethylene .dblharw. ethyl. The determination of the heat of formation of ethyl radical , 1986 .

[29]  Germán Cabañero,et al.  Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis , 2014 .

[30]  E. Suljovrujic,et al.  The influence of molecular orientation on the crosslinking/oxidative behaviour of iPP exposed to gamma radiation , 2009 .

[31]  Ke Yang,et al.  Malleable and Recyclable Poly(urea‐urethane) Thermosets bearing Hindered Urea Bonds , 2016, Advanced materials.

[32]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[33]  Damien Montarnal,et al.  Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds. , 2015, Journal of the American Chemical Society.

[34]  D. Braun Initiation of free radical polymerization by thermal cleavage of carbon-carbon bonds , 1996 .

[35]  F. D. Du Prez,et al.  Vitrimers: permanent organic networks with glass-like fluidity , 2015, Chemical science.

[36]  Atsushi Takahara,et al.  Self-Healing of a Cross-Linked Polymer with Dynamic Covalent Linkages at Mild Temperature and Evaluation at Macroscopic and Molecular Levels , 2015 .

[37]  Yong J. Yuan,et al.  Room-Temperature Self-Healable and Remoldable Cross-linked Polymer Based on the Dynamic Exchange of Disulfide Bonds , 2014 .

[38]  M. Rong,et al.  Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer , 2016 .

[39]  L. Lahey,et al.  Thiol-ene reactions of 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT): facile access to functional tripodal thioethers , 2009 .

[40]  I. Ward Mechanical properties of oriented polymers , 1974 .

[41]  Youchun Zhang,et al.  Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers? , 2009 .

[42]  Ludwik Leibler,et al.  Catalytic Control of the Vitrimer Glass Transition. , 2012, ACS macro letters.