Periodic heating amplifies the efficiency of thermoelectric energy conversion

We show that the use of a periodic heat source, instead of a constant heat source, can improve the conversion efficiency of a thermoelectric power generator (TPG). A periodic heat source drives a periodic temperature difference across the thermoelectric with an amplitude ΔT. While the time average of ΔT is identical to the temperature difference under a constant heat source with equivalent energy input, the time average of (ΔT)2 is larger, resulting in improved conversion efficiency. Here we present experimental measurements on a commercial thermoelectric device (bismuth telluride based) to validate analytical and numerical models. These models show that maximum efficiency is achieved when the period of the heat source is much larger than the thermal time constant of the TPG. Under this quasi-steady condition, the thermoelectric figure of merit ZT is still the relevant parameter for material optimization. A conventional thermoelectric material with ZT = 1, operated with sinusoidal and square-wave heat sources (ΔT = 100 K, TCold = 300 K), can achieve 140% and 180% of the constant heat source efficiency; or otherwise stated, can perform like advanced materials with ZT of 1.6 and 2.8. Even greater improvement, inaccessible through materials-based ZT enhancements, can be achieved with low duty cycle heat sources.

[1]  A. Berkowitz,et al.  Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance , 2012, Nanotechnology.

[2]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[3]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[4]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[5]  A. Majumdar,et al.  Thermoelectricity in fullerene-metal heterojunctions. , 2011, Nano letters.

[6]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[7]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[8]  G. J. Snyder,et al.  Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery , 2011 .

[9]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[10]  H. Böttner,et al.  Thermal Conductivity Measurements on Challenging Samples by the 3 Omega Method , 2010 .

[11]  Shannon K. Yee,et al.  Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions , 2010 .

[12]  M. Kovalenko,et al.  Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. , 2010, Journal of the American Chemical Society.

[13]  A. Majumdar,et al.  Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics , 2010 .

[14]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[15]  U. Ghoshal,et al.  Efficient Switched Thermoelectric Refrigerators for Cold Storage Applications , 2009 .

[16]  Osamu Yamashita,et al.  Energy conversion efficiency of a welded Cu/Bi-Te/Cu composite under periodically alternating temperature gradients , 2009 .

[17]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[18]  A. Majumdar,et al.  Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. , 2008, Nano letters.

[19]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[20]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[21]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[22]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[23]  T. Ochi,et al.  Power generation of the touching Cu/Bi-Te/Cu composites under the periodically alternating temperature gradients , 2007 .

[24]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[25]  Osamu Yamashita,et al.  Energy conversion efficiency of a thermoelectric generator under the periodically alternating temperature gradients , 2007 .

[26]  Brian Sanders,et al.  Enhancing Thermoelectric Energy Recovery Via Modulations of Source Temperature for Cyclical Heat Loadings , 2007 .

[27]  G. J. Snyder,et al.  Transient cooling of thermoelectric coolers and its applications for microdevices , 2005 .

[28]  M. Munro Evaluated Material Properties for a Sintered alpha‐Alumina , 2005 .

[29]  Ludmil Zikatanov,et al.  Improved supercooling in transient thermoelectrics , 2004 .

[30]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[31]  Gang Chen,et al.  Supercooling of Peltier cooler using a current pulse , 2002 .

[32]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[33]  U. Ghoshal,et al.  Thermoelectromechanical refrigeration based on transient thermoelectric effects , 1999 .

[34]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[35]  K. Landecker,et al.  Experiments with Peltier Junctions Pulsed with High Transient Currents , 1963 .