Purely Electronic Switching with High Uniformity, Resistance Tunability, and Good Retention in Pt‐Dispersed SiO2 Thin Films for ReRAM

Resistance switching memory operating by a purely electronic switching mechanism, which was first realized in Pt-dispersed SiO2 thin films, satisfies criteria including high uniformity, fast switching speed, and long retention for non-volatile memory application. This resistive element obeys Ohm's law for the area dependence, but its resistance exponentially increases with the film thickness, which provides new freedom to tailor the device characteristics.

[1]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[2]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Philip W. Anderson,et al.  Model for the Electronic Structure of Amorphous Semiconductors , 1975 .

[4]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[5]  M. Schlüter,et al.  Silicon Vacancy: A Possible "Anderson Negative-U" System , 1979 .

[6]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[7]  Chang,et al.  Energetics of DX-center formation in GaAs and AlxGa1-xAs alloys. , 1989, Physical review. B, Condensed matter.

[8]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[9]  J. Stathis,et al.  HYDROGEN ELECTROCHEMISTRY AND STRESS-INDUCED LEAKAGE CURRENT IN SILICA , 1999 .

[10]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[11]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[12]  O. Schirmer,et al.  Conduction states in oxide perovskites: Three manifestations of Ti3+ Jahn-Teller polarons in barium titanate , 2002 .

[13]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[14]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[15]  T. Zhu,et al.  Stress-dependent molecular pathways of silica–water reaction , 2005 .

[16]  T. Geballe,et al.  Current through SiO2 gate oxide and its low frequency fluctuations: Trapping on charged dangling bonds with negative Hubbard U , 2005 .

[17]  Philip M. Rice,et al.  Organic Materials and Thin‐Film Structures for Cross‐Point Memory Cells Based on Trapping in Metallic Nanoparticles , 2005 .

[18]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[19]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[20]  Gerbrand Ceder,et al.  First-principles study of native point defects in hafnia and zirconia , 2007 .

[21]  B. Kahng,et al.  Random Circuit Breaker Network Model for Unipolar Resistance Switching , 2008 .

[22]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[23]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[24]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[25]  Victor G. Karpov,et al.  Possible mechanisms for1/fnoise in chalcogenide glasses: A theoretical description , 2009 .

[26]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[27]  Frederick T. Chen,et al.  Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals , 2009 .

[28]  M. Terao,et al.  Electrical Phase-Change Memory: Fundamentals and State of the Art , 2009 .

[29]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[30]  R. Dittmann,et al.  Impact of Defect Distribution on Resistive Switching Characteristics of Sr2TiO4 Thin Films , 2010, Advanced materials.

[31]  Jia-Woei Wu,et al.  Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer , 2010, Nanotechnology.

[32]  Rainer Waser,et al.  Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells , 2010 .

[33]  Jun Yeong Seok,et al.  Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures , 2010, Nanotechnology.

[34]  Cheol Seong Hwang,et al.  Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy , 2010 .

[35]  Random materials: Localization on the nanoscale. , 2011, Nature nanotechnology.

[36]  Byung Joon Choi,et al.  A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure , 2011, Nanotechnology.

[37]  I-Wei Chen,et al.  A size-dependent nanoscale metal-insulator transition in random materials. , 2011, Nature nanotechnology.