Optimal control and numerical software: an overview

Optimal Control (OC) is the process of determining control and state trajectories for a dynamic system, over a period of time, in order to optimize a given performance index. With the increasing of variables and complexity, OC problems can no longer be solved analytically and, consequently, numerical methods are required. For this purpose, direct and indirect methods are used. Direct methods consist in the discretization of the OC problem, reducing it to a nonlinear constrained optimization problem. Indirect methods are based on the Pontryagin Maximum Principle, which in turn reduces to a boundary value problem. In order to have a more reliable solution, one can solve the same problem through different approaches. Here, as an illustrative example, an epidemiological application related to the rubella disease is solved using several software packages, such as the routine ode45 of Matlab, OC-ODE, DOTcvp toolbox, IPOPT and Snopt, showing the state of the art of numerical software for OC.

[1]  John T. Workman,et al.  Optimal Control Applied to Biological Models , 2007 .

[2]  Delfim F. M. Torres Lipschitzian Regularity of the Minimizing Trajectories for Nonlinear Optimal Control Problems , 2003, Math. Control. Signals Syst..

[3]  Suzanne Lenhart,et al.  Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. , 2007, Mathematical biosciences.

[4]  Eva Balsa-Canto,et al.  DOTcvpSB, a software toolbox for dynamic optimization in systems biology , 2009, BMC Bioinformatics.

[5]  J. A. Bryson Optimal control-1950 to 1985 , 1996 .

[6]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[7]  Davood Arab Khaburi,et al.  Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives , 2008 .

[8]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[9]  Bruno Buonomo,et al.  ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES , 2011 .

[10]  Audrey Hermant,et al.  Optimal control of the atmospheric reentry of a space shuttle by an homotopy method , 2011 .

[11]  G. Leitmann The Calculus of Variations and Optimal Control: An Introduction , 2013 .

[12]  Shurong Li,et al.  Optimal control of dynamic investment on inventory with stochastic demand , 2008, 2008 Chinese Control and Decision Conference.

[13]  H. Freud Mathematical Control Theory , 2016 .

[14]  Aaron Strauss Introduction to Optimal Control Theory , 1968 .

[15]  Bernard Bonnard,et al.  Geometric Orbital Transfer Using Averaging Techniques , 2008 .

[16]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[17]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[18]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[19]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[20]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[21]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[22]  Delfim F. M. Torres,et al.  The calculus of variations and optimal control , 2015 .

[23]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[24]  B. Goh Optimal singular rocket and aircraft trajectories , 2008, 2008 Chinese Control and Decision Conference.

[25]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[26]  Jan C. Willems,et al.  300 years of optimal control: From the brachystochrone to the maximum principle , 1997 .

[27]  Delfim F. M. Torres,et al.  Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics , 2000 .