Cliques and the spectral radius

We prove a number of relations between the number of cliques of a graph G and the largest eigenvalue @m(G) of its adjacency matrix. In particular, writing k"s(G) for the number of s-cliques of G, we show that, for all r>=2,@m^r^+^1(G)= =(@m(G)n-1+1r)r(r-1)r+1(nr)^r^+^1.

[1]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[2]  Michael Doob,et al.  Spectra of graphs , 1980 .

[3]  Cecil C. Rousseau,et al.  Large generalized books are p-good , 2004, J. Comb. Theory, Ser. B.

[4]  L. Lovász Combinatorial problems and exercises , 1979 .

[5]  V. Nikiforov An extension of Maclaurin's inequalities , 2006, math/0608199.

[6]  Vladimir Nikiforov Walks and the spectral radius of graphs , 2005 .

[7]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[8]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[9]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[10]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[11]  Béla Bollobás,et al.  Joints in graphs , 2008, Discret. Math..