Future lab-on-a-chip technologies for interrogating individual molecules

[1]  Robert H Blick,et al.  Whole cell patch clamp recording performed on a planar glass chip. , 2002, Biophysical journal.

[2]  M. Foquet,et al.  lambda-Repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. , 2005, Biophysical journal.

[3]  Conrad D. James,et al.  Extracellular recordings from patterned neuronal networks using planar microelectrode arrays , 2004, IEEE Transactions on Biomedical Engineering.

[4]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[5]  S. Boxer,et al.  Micropatterning Fluid Lipid Bilayers on Solid Supports , 1997, Science.

[6]  J. Eijkel,et al.  Technologies for nanofluidic systems: top-down vs. bottom-up--a review. , 2005, Lab on a chip.

[7]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[8]  H. Craighead,et al.  Mast Cell Activation on Patterned Lipid Bilayers of Subcellular Dimensions , 2003 .

[9]  T. Duke,et al.  Electrohydrodynamic Stretching of DNA in Confined Environments , 1998 .

[10]  Barbara Baird,et al.  Visualization of plasma membrane compartmentalization with patterned lipid bilayers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Clarke,et al.  Mechanical and chemical unfolding of a single protein: a comparison. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Khajak Berberian,et al.  Electrochemical imaging of fusion pore openings by electrochemical detector arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[14]  A. Meller,et al.  Nanopore unzipping of individual DNA hairpin molecules. , 2004, Biophysical journal.

[15]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[16]  Pascal Silberzan,et al.  From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Mario Cabodi,et al.  Entropic recoil separation of long DNA molecules. , 2002, Analytical chemistry.

[18]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[19]  Conrad D. James,et al.  Patterning Axonal Guidance Molecules Using a Novel Strategy for Microcontact Printing , 2003, Neurochemical Research.

[20]  M. Schwarz,et al.  Recent developments in detection methods for microfabricated analytical devices. , 2001, Lab on a chip.

[21]  J. Sturm,et al.  Micro- and nanofluidics for DNA analysis , 2004, Analytical and bioanalytical chemistry.

[22]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[23]  Cees Dekker,et al.  Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. , 2006, Nano letters.

[24]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[25]  David Keller,et al.  Scanning Force Microscopy in Biology , 1995 .

[26]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[27]  Harold G. Craighead,et al.  ENTROPIC TRAPPING AND ESCAPE OF LONG DNA MOLECULES AT SUBMICRON SIZE CONSTRICTION , 1999 .

[28]  Stephen R Quake,et al.  Solving the "world-to-chip" interface problem with a microfluidic matrix. , 2003, Analytical chemistry.

[29]  Koji Takada,et al.  Long atomic imaging over a 5-μm-long region using an ultralow thermally drifted dual-tunneling-unit scanning tunneling microscope in a thermostabilized cell , 1999 .

[30]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[31]  H. Craighead,et al.  Separation of long DNA molecules in a microfabricated entropic trap array. , 2000, Science.

[32]  Andy Sischka,et al.  Compact microscope-based optical tweezers system for molecular manipulation , 2003 .

[33]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[34]  Samuel M Stavis,et al.  Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. , 2005, Lab on a chip.

[35]  D. Luo,et al.  Single-molecule mobility and spectral measurements in submicrometer fluidic channels , 2005 .

[36]  R. Service The Race for the $1000 Genome , 2006, Science.

[37]  D. Grier A revolution in optical manipulation , 2003, Nature.

[38]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Reed,et al.  Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. , 2002, Biosensors & bioelectronics.

[40]  Harold G. Craighead,et al.  Fabrication of microcapillaries and waveguides for single-molecule detection , 1998, Photonics West - Biomedical Optics.

[41]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[42]  B. Stipe,et al.  A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy , 1999 .

[43]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[44]  Stephen R Quake,et al.  Tip-enhanced fluorescence microscopy at 10 nanometer resolution. , 2004, Physical review letters.

[45]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[46]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[47]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[48]  Lei Wu,et al.  Ion-channel assay technologies: quo vadis? , 2001, Drug discovery today.

[49]  D. Luo,et al.  Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels , 2005, Nanotechnology.

[50]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[51]  Simon Song,et al.  Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. , 2004, Analytical chemistry.

[52]  Hiroyuki Fujita,et al.  Highly coupled ATP synthesis by F1-ATPase single molecules , 2005, Nature.

[53]  P. Fromherz,et al.  Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  H. Craighead,et al.  Zero mode waveguides for single-molecule spectroscopy on lipid membranes. , 2006, Biophysical journal.

[55]  Larry J. Kricka,et al.  Revolution on a square centimeter , 1998, Nature Biotechnology.

[56]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[57]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[58]  Rhiannon L. Nolan,et al.  Single-molecule spectroscopy for nucleic acid analysis: a new approach for disease detection and genomic analysis. , 2004, Current pharmaceutical biotechnology.

[59]  Horst Vogel,et al.  Chip based biosensor for functional analysis of single ion channels , 2000 .

[60]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[61]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[62]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[63]  D. Branton,et al.  Characterization of nucleic acids by nanopore analysis. , 2002, Accounts of chemical research.

[64]  Andreas Manz,et al.  Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? , 2005, Analytical and bioanalytical chemistry.

[65]  C. Trautmann,et al.  Microstructured glass chip for ion-channel electrophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  A. Manz,et al.  Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. , 2004, Lab on a chip.

[67]  Christian H. Reccius,et al.  Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. , 2006, Biophysical journal.

[68]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[69]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[70]  W. Whitten,et al.  Confinement and manipulation of individual molecules in attoliter volumes. , 1998, Analytical chemistry.

[71]  C. James,et al.  An electrochemical detector array to study cell biology on the nanoscale. , 2002 .

[72]  F Bezanilla,et al.  Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. , 2001, Biophysical journal.

[73]  J. Korlach,et al.  DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. , 2002, Analytical chemistry.

[74]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[75]  K. Mogensen,et al.  Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. , 2003, Applied optics.

[76]  Robert Riehn,et al.  Restriction mapping in nanofluidic devices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Shoji Takeuchi,et al.  Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[78]  H. Hansma,et al.  Biomolecular imaging with the atomic force microscope. , 1994, Annual review of biophysics and biomolecular structure.

[79]  R. Larson,et al.  Stretching of a single tethered polymer in a uniform flow. , 1995, Science.

[80]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[81]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[82]  H. Craighead,et al.  Suspended glass nanochannels coupled with microstructures for single molecule detection , 2005 .

[83]  W. Bialek,et al.  Physical limits to biochemical signaling. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Thomas P. Burg,et al.  Suspended microchannel resonators for biomolecular detection , 2003 .

[85]  Hiroyuki Fujita,et al.  Microfabricated arrays of femtoliter chambers allow single molecule enzymology , 2005, Nature Biotechnology.