The spores of Phytophthora: weapons of the plant destroyer

Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.

[1]  A. Wasson,et al.  Genes expressed in zoospores of Phytophthora nicotianae , 2003, Molecular Genetics and Genomics.

[2]  C. Reggiani,et al.  Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. , 1996, The Journal of physiology.

[3]  M. W. Dick,et al.  Fungi, flagella and phylogeny , 1997 .

[4]  G. Hyde,et al.  Asexual Sporulation in the Oomycetes , 1997 .

[5]  B. Grant,et al.  Role of RNA and protein synthesis in stimulated germination of zoospores of the pathogenic fungusPhytophthora palmivora , 1989 .

[6]  A. W. Barksdale INTER‐THALLIC SEXUAL REACTIONS IN ACHLYA, A GENUS OF THE AQUATIC FUNGI , 1960 .

[7]  B. Grant,et al.  31P NMR studies on the effect of phosphite on Phytophthora palmivora. , 1990, Journal of general microbiology.

[8]  The advance of the fungi , 1965 .

[9]  D. Rizzo,et al.  Phytophthora ramorum as the Cause of Extensive Mortality of Quercus spp. and Lithocarpus densiflorus in California. , 2002, Plant disease.

[10]  S. Dietrich Presence of polyphosphate of low molecular weight in zygomycetes , 1976, Journal of bacteriology.

[11]  S. Bartnicki-García,et al.  Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. , 1973, Journal of Biological Chemistry.

[12]  T. A. Campbell,et al.  Oomycete plant pathogens use electric fields to target roots. , 2002, Molecular plant-microbe interactions : MPMI.

[13]  S. Bartnicki-García,et al.  Electron microscopy of gametangial interaction and oospore development in Phytophthora capsici , 1975, Archives of Microbiology.

[14]  Brurberg,et al.  Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance and virulence phenotype , 2000 .

[15]  B. Sobral,et al.  Comparative analysis of expressed sequences in Phytophthora sojae. , 2000, Plant physiology.

[16]  P. Morris,et al.  Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones , 1992 .

[17]  J. Cuevas,et al.  Vasoactive intestinal polypeptide modulation of nicotinic ACh receptor channels in rat intracardiac neurones. , 1996, Journal of Physiology.

[18]  S. Buczacki Zoosporic plant pathogens : a modern perspective , 1983 .

[19]  N. Williams,et al.  Soybean isoflavones trigger a calcium influx in Phytophthora sojae. , 1999, Fungal genetics and biology : FG & B.

[20]  M. Gijzen,et al.  Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. , 2004, Molecular plant-microbe interactions : MPMI.

[21]  H. Judelson,et al.  Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment , 2002, Current Genetics.

[22]  H. Judelson,et al.  Novel Protein Kinase Induced during Sporangial Cleavage in the Oomycete Phytophthora infestans , 2002, Eukaryotic Cell.

[23]  H. Hohl,et al.  Environmental signalling during induction of appressorium formation in Phytophthora , 1997 .

[24]  M. Parisi,et al.  Translational repression: A duet of Nanos and Pumilio , 2000, Current Biology.

[25]  H. Judelson,et al.  The hAT -like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans , 2004, Molecular Genetics and Genomics.

[26]  D. Hilbert,et al.  Compartmentalization of Gene Expression during Bacillus subtilis Spore Formation , 2004, Microbiology and Molecular Biology Reviews.

[27]  D. Aylor,et al.  SPREAD OF PLANT DISEASE ON A CONTINENTAL SCALE: ROLE OF AERIAL DISPERSAL OF PATHOGENS , 2003 .

[28]  U. Gisi,et al.  Dynamics of indirect germination in Phytophthora cactorum sporangia , 1979 .

[29]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[30]  H. Judelson,et al.  Stage‐specific gene expression during sexual development in Phytophthora infestans , 2002, Molecular microbiology.

[31]  M. Gealt,et al.  Gene control of developmental competence in Aspergillus nidulans. , 1973, Developmental biology.

[32]  J. Bigot,et al.  Effects of Ca-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants , 2000 .

[33]  N. P. Money Why oomycetes have not stopped being fungi , 1998 .

[34]  H. Judelson,et al.  Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. , 1995, Genetics.

[35]  E. Gäumann,et al.  Comparative morphology of Fungi , 1926 .

[36]  H. Judelson,et al.  Sporangium-Specific Gene Expression in the Oomycete Phytopathogen Phytophthora infestans , 2003, Eukaryotic Cell.

[37]  H. Judelson,et al.  A Gene Expressed during Sexual and Asexual Sporulation in Phytophthora infestans Is a Member of the Puf Family of Translational Regulators , 2003, Eukaryotic Cell.

[38]  J. Dixon,et al.  A Family of Putative Tumor Suppressors Is Structurally and Functionally Conserved in Humans and Yeast* , 1997, The Journal of Biological Chemistry.

[39]  U. Ugalde,et al.  Conidiation induction in Penicillium. , 2003, Research in microbiology.

[40]  H. Judelson,et al.  A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. , 2003, Molecular plant-microbe interactions : MPMI.

[41]  D. S. Shaw,et al.  The duplication cycle and DAPI-DNA contents in nuclei of germinating zoospore cysts of Phytophthora infestans , 1992 .

[42]  Richard A. Wilson,et al.  Relationship between Secondary Metabolism and Fungal Development , 2002 .

[43]  F. Govers,et al.  Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi , 2001, Current Genetics.

[44]  D. S. Shaw,et al.  The development of sporangia of Phytophthora infestans , 1995 .

[45]  N. Gow,et al.  Proteomic analysis of asexual development of Phytophthora palmivora. , 2003, Mycological research.

[46]  H. Hohl,et al.  Host–parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: tuber tissue , 1976 .

[47]  B. Tyler Molecular basis of recognition between phytophthora pathogens and their hosts. , 2002, Annual review of phytopathology.

[48]  F. Govers,et al.  Phospholipase D in Phytophthora infestans and its role in zoospore encystment. , 2002, Molecular plant-microbe interactions : MPMI.

[49]  O. T. Page,et al.  Purine metabolism and differential inhibition of spore germination in Phytophthora infestans. , 1978, Canadian journal of microbiology.

[50]  V. Thorsson,et al.  Integrated Genomic and Proteomic Analyses of Gene Expression in Mammalian Cells*S , 2004, Molecular & Cellular Proteomics.

[51]  David A. Jones,et al.  Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. , 2002, Molecular plant-microbe interactions : MPMI.

[52]  M. Sleigh Cilia and flagella , 1974 .

[53]  J. Ristaino,et al.  Commercial Fungicide Formulations Induce In Vitro Oospore Formation and Phenotypic Change in Mating Type in Phytophthora infestans. , 2000, Phytopathology.

[54]  H. Judelson,et al.  A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. , 2005, Fungal genetics and biology : FG & B.

[55]  N. Gow,et al.  Calcium-Dependent, Genus-Specific, Autoaggregation of Zoospores of Phytopathogenic Fungi , 1995 .

[56]  J. Deacon,et al.  Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora , 1993 .

[57]  H. Judelson,et al.  Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination , 1997, Current Genetics.

[58]  W. Ellington,et al.  Evolution and physiological roles of phosphagen systems. , 2001, Annual review of physiology.

[59]  P. H. Tsao,et al.  Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology , 1988 .

[60]  R. C. Warren,et al.  Viability of sporangia of Phytophthora infestans in relation to drying , 1975 .

[61]  J. Ristaino,et al.  New Frontiers in the Study of Dispersal and Spatial Analysis of Epidemics Caused by Species in the Genus Phytophthora. , 2000, Annual review of phytopathology.

[62]  E. Schmelzer,et al.  Cyst germination proteins of the potato pathogen Phytophthora infestans share homology with human mucins. , 2000, Molecular plant-microbe interactions : MPMI.

[63]  D. Nuss,et al.  Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. , 1997, Molecular plant-microbe interactions : MPMI.

[64]  U. Kües Life History and Developmental Processes in the Basidiomycete Coprinus cinereus , 2000, Microbiology and Molecular Biology Reviews.

[65]  Y Nagahama,et al.  Biochemical Identification of Xenopus Pumilio as a Sequence-specific Cyclin B1 mRNA-binding Protein That Physically Interacts with a Nanos Homolog, Xcat-2, and a Cytoplasmic Polyadenylation Element-binding Protein* , 2001, The Journal of Biological Chemistry.

[66]  F. Govers,et al.  A Phytophthora infestans G-Protein β Subunit Is Involved in Sporangium Formation , 2003, Eukaryotic Cell.

[67]  H. Judelson Chromosomal heteromorphism linked to the mating type locus of the oomycetePhytophthora infestans , 1996, Molecular and General Genetics MGG.

[68]  R. Michelmore,et al.  Transformation of the oomycete pathogen, Phytophthora infestans. , 1991, Molecular plant-microbe interactions : MPMI.

[69]  G. Bryan,et al.  Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library , 2001, Molecular Genetics and Genomics.

[70]  F. Govers,et al.  High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif , 2004, Cellular and Molecular Life Sciences CMLS.

[71]  C. Bimpong Changes in metabolic reserves and enzyme activities during zoospore motility and cyst germination in Phytophthora palmivora , 1975 .

[72]  W. Ko,et al.  Characterization of α hormones of Phytophthora parasitica 79 Chemical characterization of α hormones of Phytophthora parasitica , 1999 .

[73]  T. Torto-Alalibo,et al.  A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B* , 2004, Journal of Biological Chemistry.

[74]  H. Judelson,et al.  Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. , 2004, Molecular plant-microbe interactions : MPMI.

[75]  K. Gould,et al.  Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. , 2001, Trends in cell biology.

[76]  W. Ligterink,et al.  A Gα subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans , 2004, Molecular microbiology.

[77]  William E. Fry Principles of Plant Disease Management , 1982 .

[78]  D. Aylor,et al.  Survival of Phytophthora infestans Sporangia Exposed to Solar Radiation. , 2000, Phytopathology.

[79]  H. Judelson,et al.  Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus‐like oomycete Phytophthora infestans , 2003, Molecular microbiology.

[80]  A. Hardham,et al.  Characterisation of Phytophthora nicotianae zoospore and cyst membrane proteins , 2002 .

[81]  A. Hardham,et al.  Gene expression in germinated cysts of Phytophthora nicotianae. , 2004, Molecular plant pathology.

[82]  Kyung-Sik Ham,et al.  Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. , 2002, The Plant cell.

[83]  A. Hardham,et al.  Structure and expression of the genes encoding proteins resident in large peripheral vesicles of Phytophthora cinnamomi zoospores. , 2001, Protoplasma.

[84]  D. Carson,et al.  Mammalian reproductive tract mucins. , 1999, Human reproduction update.

[85]  Rex A. Dwyer,et al.  Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. , 2005, Molecular plant-microbe interactions : MPMI.

[86]  L. Hood,et al.  Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae*S , 2002, Molecular & Cellular Proteomics.

[87]  Deacon,et al.  Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen phytophthora parasitica , 1998, Fungal genetics and biology : FG & B.

[88]  M. Sogin,et al.  Evolution of the protists and protistan parasites from the perspective of molecular systematics. , 1998, International journal for parasitology.

[89]  Alfonso,et al.  AFLP Linkage Map of the Oomycete Phytophthora infestans , 1997, Fungal genetics and biology : FG & B.

[90]  H. Judelson Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. , 1996, Genetics.

[91]  H. Judelson,et al.  Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. , 2003, Fungal genetics and biology : FG & B.

[92]  F. Govers,et al.  Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. , 2003, Molecular plant pathology.

[93]  N. Gow,et al.  Mechanism of electrotaxis of zoospores of phytopathogenic fungi. , 1993 .

[94]  F. Govers,et al.  Resistance of Nicotiana benthamiana to Phytophthora infestans Is Mediated by the Recognition of the Elicitor Protein INF1 , 1998, Plant Cell.

[95]  A. Harwood,et al.  Cell polarity and Dictyostelium development. , 2003, Current opinion in microbiology.

[96]  H. Judelson Expression and Inheritance of Sexual Preference and Selfing Potential inPhytophthora infestans , 1997 .

[97]  T. A. Torto,et al.  The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase , 2002, Current Genetics.

[98]  B. Sobral,et al.  Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. , 1999, Fungal genetics and biology : FG & B.

[99]  W. Ko Hormonal Heterothallism and Homothallism in Phytophthora , 1988 .

[100]  C. Hocart,et al.  The role of proline in osmoregulation in Phytophthora nicotianae. , 2002, Fungal genetics and biology : FG & B.

[101]  C. Smart,et al.  Characterization of 1,3-β-glucanase and 1,3;1,4-β-glucanase genes from Phytophthora infestans , 2003 .

[102]  L D Jennings,et al.  A new potent inhibitor of fungal melanin biosynthesis identified through combinatorial chemistry. , 1999, Bioorganic & medicinal chemistry letters.

[103]  O. K. Ribeiro,et al.  Phytophthora diseases worldwide , 1998 .

[104]  N. Grünwald,et al.  Soilborne Oospores of Phytophthora infestans in Central Mexico Survive Winter Fallow and Infect Potato Plants in the Field. , 2004, Plant disease.