A review of the Magnus effect in aeronautics

Abstract The Magnus effect is well-known for its influence on the flight path of a spinning ball. Besides ball games, the method of producing a lift force by spinning a body of revolution in cross-flow was not used in any kind of commercial application until the year 1924, when Anton Flettner invented and built the first rotor ship Buckau . This sailboat extracted its propulsive force from the airflow around two large rotating cylinders. It attracted attention wherever it was presented to the public and inspired scientists and engineers to use a rotating cylinder as a lifting device for aircraft. This article reviews the application of Magnus effect devices and concepts in aeronautics that have been investigated by various researchers and concludes with discussions on future challenges in their application.

[1]  D. R. Cichy,et al.  Flight tests of a rotating cylinder flap on a North American Rockwell YOV-10 aircraft , 1972 .

[2]  John William Strutt,et al.  Scientific Papers: On the Irregular Flight of a Tennis-Ball , 2009 .

[3]  Carmine Badalamenti,et al.  The Effects of Endplates on a Rotating Cylinder in Crossflow , 2008 .

[4]  V. J. Modi,et al.  Fluid dynamics of airfoils with moving surface boundary layer control , 1986 .

[5]  Ahmed Z. Al-Garni,et al.  Flow control for an airfoil with leading-edge rotation : An experimental study , 2000 .

[6]  Chang-Yu Liu,et al.  IMPROVEMENT PLATE FOR SEMIBALANCED RUDDER , 1977 .

[7]  S. H. Salter Aerodynamics in a spin , 1991, Nature.

[8]  W. S. Johnson,et al.  Boundary-layer flows from fixed to moving surfaces including gap effects , 1978 .

[9]  V. J. Modi,et al.  Effect of moving surfaces on the airfoil boundary-layer control , 1990 .

[10]  William Crowther,et al.  Flight control of a spin stabilised axi-symmetric disc-wing , 2001 .

[11]  L. Ericsson MOVING WALL EFFECTS IN UNSTEADY FLOW , 1988 .

[12]  W. S. Johnson,et al.  Rotating cylinder for circulation control on an airfoil , 1976 .

[13]  C. A. J. Fletcher,et al.  Negative Magnus forces in the critical Reynolds number regime. , 1972 .

[14]  John B Wheatley Simplified aerodynamic analysis of the cyclogiro rotating wing system , 1933 .

[15]  Foettinger,et al.  Neue Grundlagen für die theoretische und experimentelle Behandlung des Propellerproblems , 1918 .

[16]  W. S. Johnson,et al.  On the calculation of boundary layers along rotating cylinders , 1977 .

[17]  L Prandtl Application of the "magnus Effect" to the Wind Propulsion of Ships , 1926 .

[18]  W. F. Phillips,et al.  Analytical Approximation for the Mechanics of Airplane Spin , 2002 .

[19]  F. N. M. Brown Discussion: “The Magnus Effect: A Summary of Investigations to Date” (Swanson, W. M., 1961, ASME J. Basic Eng., 83, pp. 461–470) , 1961 .

[20]  Tetsuya Sato,et al.  26th AIAA Applied Aerodynamics Conference , 2008 .

[21]  R. Simpson A generalized correlation of roughness density effects on the turbulent boundary layer. , 1973 .

[22]  S. Mittal,et al.  Flow past a rotating cylinder , 2003, Journal of Fluid Mechanics.

[23]  V. J. Modi,et al.  Rotating air scoop as airfoil boundary-layer control , 1988 .

[24]  V. Modi,et al.  MOVING SURFACE BOUNDARY-LAYER CONTROL AS APPLIED TO TWO-DIMENSIONAL AIRFOILS , 1989 .

[25]  V. J. Modi,et al.  MOVING SURFACE BOUNDARY-LAYER CONTROL: A REVIEW , 1997 .

[26]  Alberto Alvarez Calderon,et al.  Rotating Cylinder Flaps for V/S.T.O.L Aircraft , 1964 .

[27]  V. J. Modi,et al.  Moving surface boundary layer control for aircraft operation at high incidence , 1981 .

[28]  Miles C. Miller Wind-Tunnel Measurements of the Surface Pressure Distribution on a Spinning Magnus Rotor , 1978 .

[29]  G. Bandyopadhyay,et al.  High-Performance Airfoil with Moving Surface Boundary-Layer Control , 1996 .

[30]  J. A. Weiberg,et al.  Large-scale wind-tunnel tests of an airplane model with four propellers and rotating cylinder flaps Technical note , 1970 .

[31]  M. Zdravkovich Flow around circular cylinders , 2016 .

[32]  J. S. Tennant,et al.  Turbulent boundary-layer flow from stationary to moving surfaces. , 1973 .

[33]  F Ahlborn The Magnus effect in theory and in reality , 1930 .

[34]  J. Iversen The Magnus rotor as an aerodynamic decelerator , 1968 .

[35]  Seung Jo Kim,et al.  Structural Design of Cyclocopter Blade System , 2005 .

[36]  Seung Jo Kim,et al.  Thrust Control Mechanism of VTOL UAV Cyclocopter with Cycloidal Blades System , 2005 .

[37]  I. Hwang,et al.  Development of a Four-Rotor Cyclocopter , 2008 .

[38]  L. Ericsson,et al.  Universality of the Moving-Wall Effect , 2000 .

[39]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[40]  Seung Jo Kim,et al.  Experimental Investigation of VTOL UAV Cyclocopter with Four Rotors , 2007 .

[41]  Roy Gibbens The cycloidal propeller for twenty first century airships , 1991 .

[42]  S. A. Prince,et al.  VORTEX SHEDDING FROM A ROTATING CIRCULAR CYLINDER AT MODERATE SUB-CRITICAL REYNOLDS NUMBERS AND HIGH VELOCITY RATIO , 2008 .

[43]  W. M. Swanson The Magnus Effect: A Summary of Investigations to Date , 1961 .

[44]  A. STRAHAN Sir Archibald Geikie, O.M., K.C.B., F.R.S , 1924, Nature.

[45]  Susumu Nagano,et al.  Study of Flow Around a Rotating Circular Cylinder , 1972 .

[46]  Claes Johnson,et al.  Computational Turbulent Incompressible Flow: Applied Mathematics: Body and Soul 4 , 2007 .

[47]  R. C. Innis,et al.  Takeoff and landing performance and noise measurements of a deflected slipstream STOL airplane with interconnected propellers and rotating cylinder flaps , 1973 .

[48]  Christian Breitsamter,et al.  Numerical Analysis of a Rotating Cylinder with Spanwise Disks , 2012 .

[49]  E B Wolff,et al.  Preliminary investigation of the effect of a rotating cylinder in a wing , 1925 .

[50]  D. H. Hickey,et al.  Correlation of low speed wind tunnel and flight test data for V/STOL aircraft , 1975 .

[51]  Gress,et al.  Lift Fans as Gyroscopes for Controlling Compact VTOL Air Vehicles: Overview and Development Status of Oblique Active Tilting (OAT) , 2007 .

[52]  James H. Boschma,et al.  Construction and testing of a new aircraft cycloidal propeller , 1999 .

[53]  Jost Dr. Seifert Fluggerät mit rotierenden Zylindern zur Erzeugung von Auftrieb und/oder Vortrieb , 2008 .

[54]  B. W. Skews Autorotation of many-sided bodies in an airstream , 1991, Nature.

[55]  J. A. Weiberg,et al.  Large-scale wind-tunnel tests of an airplane model with two propellers and rotating cylinder flaps , 1968 .

[56]  L. E. Ericsson,et al.  Comment on 'Aeroelastic oscillations caused by transitional boundarylayers and their attenuation' , 1988 .

[57]  J Ackeret Recent experiments at the Gottingen Aerodynamic Institute , 1925 .

[58]  V. J. Modi,et al.  Moving surface boundary-layer control: Studies with bluff bodies and application , 1991 .

[59]  Elliott G Reid,et al.  Tests of rotating cylinders , 1924 .

[60]  Ray Windler,et al.  Wind-tunnel tests of a cyclogiro rotor , 1935 .

[61]  Frank Rizzo The Flettner Rotor Ship in the Light of the Kutta-Joukowski Theory and of Experimental Results , 1925 .

[62]  W. G. Bickley The Influence of Vortices upon the Resistance Experienced by Solids Moving through a Liquid , 1928 .

[63]  John Borg Magnus Effect: An Overview of Its Past and Future Practical Applications. Volumes 1 and 2 , 1986 .

[64]  Sir Thomson,et al.  The Dynamics of a Golf Ball , 1910, Nature.

[65]  James Boschma Modern aviation applications for cycloidal propulsion , 2001 .

[66]  E B Wolff,et al.  Tests for determining the effect of a rotating cylinder fitted into the leading edge of an airplane wing , 1926 .

[67]  J. Gordon Leishman,et al.  Development of the Autogiro: A Technical Perspective , 2004 .

[68]  James H. Boschma Cycloidal Propulsion for UAV VTOL Applications , 1998 .

[69]  S. C. Luo,et al.  Side Force on an Ogive Cylinder: Effects of Surface Roughness , 2002 .

[70]  J. S. Tennant,et al.  A Subsonic Diffuser with Moving Walls for Boundary-Layer Control , 1973 .

[71]  J. F. Marchman,et al.  Aerodynamics of an aspect ratio 8 wing at low Reynolds numbers , 1985 .

[72]  Yuval Levy,et al.  Experimental and Numerical Study of Cyclogiro Aerodynamics , 2006 .

[73]  Anton Flettner Die Anwendung der Erkenntnisse der Aerodynamik zum Windantrieb von Schiffen , 1925 .

[74]  G. Magnus,et al.  Ueber die Abweichung der Geschosse, und: Ueber eine auffallende Erscheinung bei rotirenden Körpern , 1853 .

[75]  V. J. Modi,et al.  Fluid dynamics of airfoils with moving surface boundary-layer control , 1988 .

[76]  A Betz,et al.  The "Magnus effect" - the principle of the Flettner rotor , 1925 .

[77]  Youngha Yoon,et al.  DESIGN AND PERFORMANCE TESTS OF CYCLOIDAL PROPULSION SYSTEMS , 2003 .

[78]  Yun,et al.  A New VTOL UAV Cyclocopter with Cycloidal Blades System , 2004 .

[79]  Eric Shawn Parsons Investigation and Characterization of a Cycloidal Rotor for Application to a Micro-Air Vehicle , 2005 .

[80]  F. Giralt,et al.  Vortex shedding from a spinning cylinder , 1983 .

[81]  James D. Iversen Correlation of Magnus force data for slender spinning cylinders , 1972 .

[82]  Seung Jo Kim,et al.  Multidisciplinary Optimal Design of Cyclocopter Blade System , 2005 .

[83]  Lars E. Ericsson Moving wall effect in relation to other dynamic stall flow mechanisms , 1994 .

[84]  Tim Lee,et al.  Flow Past an Airfoil with a Leading-Edge Rotation Cylinder , 2002 .

[85]  Gil Iosilevskii,et al.  AERODYNAMICS OF THE CYCLOGIRO , 2003 .

[86]  Verein Deutscher Ingenieure,et al.  Zeitschrift des Vereins Deutscher Ingenieure , 1857 .

[87]  J. Graham,et al.  Flow Around Circular Cylinders. Vol. 2: Applications , 2003 .

[88]  S. Y. Min,et al.  Design and Testing of VTOL UAV Cyclocopter with 4 Rotors , 2006 .