Bézout Identities With Inequality Constraints

We dedicate this paper to Ambikeshwar Sharma with esteem, admiration and gratitude for lighting our way. Abstract. This paper examines the set B(P) = fQ : P Q = 1 ; Q 2 R m g where P 2 R m is unimodular and R is either the algebra P R of algebraic polynomials which are real{valued on the cube I d or the algebra L R of Laurent polynomials which are real{valued on the torus T d : We sharpen previous results for the case m = 2; d = 1 by showing that if P is non-negative, then there exists a positive Q 2 B(P) whose length is bounded by a function of the length of P and the separation between the zeros of P: In the general case we employ the Quillen-Suslin theorem, the Swan theorem, the Weierstrass approximation theorem and the Michael selection theorem to prove a result about the existence of solutions to the B ezout identity with inequality constraints.

[1]  Ivor Grattan-Guinness,et al.  Companion encyclopedia of the history and philosophy of the mathematical sciences , 1994 .

[2]  T. Sederberg Implicit and parametric curves and surfaces for computer aided geometric design , 1983 .

[3]  A. Markushevich Analytic Function Theory , 1996 .

[4]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[5]  Richard G. Swan,et al.  Projective modules over Laurent polynomial rings , 1978 .

[6]  N. Bose Multidimensional Systems Theory , 1985 .

[7]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[8]  Martin Vetterli,et al.  A computational theory of laurent polynomial rings and multidimensional fir systems , 1999 .

[9]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[10]  Charles A. Micchelli,et al.  Interpolatory Subdivision Schemes and Wavelets , 1996 .

[11]  Carlos A. Berenstein,et al.  On explicit solutions to the Bezout equation , 1984 .

[12]  A. Suslin Projective modules over a polynomial ring , 1974 .

[13]  Charles A. Micchelli Using The Refinement Equation For The Construction of Pre-Wavelets VI: Shift Invariant Subspaces , 1992 .

[14]  H. S. M. Coxeter,et al.  Geometry and Algebra in Ancient Civilizations , 1985 .

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  E. Michael Continuous Selections. I , 1956 .

[17]  A. Suslin Projective modules over polynomial rings are free , 1976 .

[18]  L. Carleson Interpolations by Bounded Analytic Functions and the Corona Problem , 1962 .

[19]  Carlos A. Berenstein,et al.  Small Degree Solutions for the Polynomial Bezout Equation , 1988 .

[20]  Dinesh Manocha,et al.  Algorithm for implicitizing rational parametric surfaces , 1992, Comput. Aided Geom. Des..

[21]  E. Chionh Base points, resultants, and the implicit representation of rational surfaces , 1990 .

[22]  Andrei Suslin,et al.  ON THE STRUCTURE OF THE SPECIAL LINEAR GROUP OVER POLYNOMIAL RINGS , 1977 .

[23]  Carlos A. Berenstein,et al.  Residue Currents and Bezout Identities , 1993 .

[24]  E. Kunz Introduction to commutative algebra and algebraic geometry , 1991, Acta Applicandae Mathematicae.

[25]  B. A. Taylor,et al.  Interpolation problems in Cn with applications to harmonic analysis , 1980 .

[26]  C. Hoffmann Algebraic curves , 1988 .

[27]  Charles A. Micchelli,et al.  Design of conjugate quadrature filters having specified zeros , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Z. Nehari Bounded analytic functions , 1950 .

[29]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[30]  P. Fuhrmann Linear Systems and Operators in Hilbert Space , 1982 .

[31]  S. M. Bhatwadekar Projective Modules Over Polynomial Rings , 1999 .

[32]  Carlos A. Berenstein,et al.  Analytic Bezout identities , 1989 .

[33]  Charles A. Micchelli On a Family of Filters Arising in Wavelet Construction , 1997 .