The influence of calcium on sodium efflux in squid axons

1. Previous work has shown that the sodium efflux from the axons of Loligo forbesi increases when external sodium is replaced by lithium.

[1]  A. Hodgkin,et al.  The effect of cyanide on the efflux of calcium from squid axons , 1969, The Journal of physiology.

[2]  R. Keynes,et al.  The ouabain‐sensitive fluxes of sodium and potassium in squid giant axons , 1969, The Journal of physiology.

[3]  C. Hales,et al.  Cations and the secretion of insulin from rabbit pancreas in vitro , 1968, The Journal of physiology.

[4]  L. Mullins,et al.  Sodium Fluxes in Internally Dialyzed Squid Axons , 1968, The Journal of general physiology.

[5]  M. Cohen,et al.  The action of sodium pump inhibitors on neuromuscular transmission , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  A. Eddy A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. , 1968, The Biochemical journal.

[7]  H. Reuter,et al.  The dependence of calcium efflux from cardiac muscle on temperature and external ion composition , 1968, The Journal of physiology.

[8]  D. E. Goldman,et al.  The Action of Certain Polyvalent Cations on the Voltage-Clamped Lobster Axon , 1968, The Journal of general physiology.

[9]  C. Hales,et al.  The role of sodium and potassium in insulin secretion from rabbit pancreas , 1968, The Journal of physiology.

[10]  M. Blaustein,et al.  Sodium-dependent uptake of calcium by crab nerve. , 1968, Biochimica et biophysica acta.

[11]  P. Banks The effect of ouabain on the secretion of catecholamines and on the intracellular concentration of potassium , 1967, The Journal of physiology.

[12]  M. Blaustein,et al.  A ouabain-insensitive, calcium-sensitive sodium efflux from giant axons of Loligo. , 1967, The Journal of physiology.

[13]  R. A. Sjodin,et al.  The ion selectivity and concentration dependence of cation coupled active sodium transport in squid giant axons. , 1967, Currents in modern biology.

[14]  R. Crane,et al.  Studies of in vitro transmural potentials in relation to intestinal absorption: III. K+ inhibition of Na+-dependent transmural potential of rat small intestine , 1967 .

[15]  Schatzmann Hj The mechanism of action of cardiac glycosides , 1966 .

[16]  J. Lettvin,et al.  Ionic Conductance Changes in Lobster Axon Membrane When Lanthanum Is Substituted for Calcium , 1966, The Journal of general physiology.

[17]  L. Mullins,et al.  Potassium-free Effect in Squid Axons , 1964, Nature.

[18]  I. Glynn THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. , 1964, Pharmacological reviews.

[19]  J. Judah,et al.  THE BIOCHEMISTRY OF SODIUM TRANSPORT * , 1964, Biological reviews of the Cambridge Philosophical Society.

[20]  R. Niedergerke Movements of Ca in frog heart ventricles at rest and during contractures , 1963, The Journal of physiology.

[21]  P. Caldwell,et al.  The phosphorus metabolism of squid axons and its relationship to the active transport of sodium , 1960, The Journal of physiology.

[22]  A. Hodgkin,et al.  The effects of injecting ‘energy‐rich’ phosphate compounds on the active transport of ions in the giant axons of Loligo , 1960, The Journal of physiology.

[23]  A. Hodgkin,et al.  Partial inhibition of the active transport of cations in the giant axons of Loligo , 1960, The Journal of physiology.

[24]  A. Hodgkin,et al.  Movements of labelled calcium in squid giant axons , 1957, The Journal of physiology.

[25]  A. Hodgkin,et al.  Experiments on the injection of substances into squid giant axons by means of a microsyringe , 1956, The Journal of physiology.

[26]  F. Roughton,et al.  The equilibrium between oxygen and haemoglobin: I. The oxygen dissociation curve of dilute blood solutions. , 2022, The Journal of physiology.