Automata and Transducers in the Computer Algebra System Sage

In this tutorial, we demonstrate how easy it is to construct finite state machines, in particular automata and transducers, within the computer algebra system Sage. As a beneficent byproduct, we calculate the asymptotic Hamming weight of a non-adjacent-form-like digit expansion, which was not known before.

[1]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[2]  Roberto Maria Avanzi,et al.  Scalar Multiplication on Koblitz Curves Using the Frobenius Endomorphism and Its Combination with Point Halving: Extensions and Mathematical Analysis , 2006, Algorithmica.

[3]  Helmut Prodinger,et al.  Counting optimal joint digit expansions. , 2005 .

[4]  Marcel Paul Schützenberger,et al.  Sur une Variante des Fonctions Sequentielles , 1977, Theor. Comput. Sci..

[5]  Clemens Heuberger,et al.  Minimal weight and colexicographically minimal integer representations , 2007, J. Math. Cryptol..

[6]  Clemens Heuberger,et al.  Combinatorial Characterization of Independent Transducers via Functional Digraphs , 2014 .

[7]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[8]  Helmut Prodinger,et al.  Analysis of Alternative Digit Sets for Nonadjacent Representations , 2006 .

[9]  Roberto Maria Avanzi,et al.  Redundant τ-adic expansions I: non-adjacent digit sets and their applications to scalar multiplication , 2008, Des. Codes Cryptogr..

[10]  J. Olivos,et al.  Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..

[11]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[12]  CLEMENS HEUBERGER,et al.  THE ALTERNATING GREEDY EXPANSION AND APPLICATIONS TO LEFT-TO-RIGHT ALGORITHMS IN CRYPTOGRAPHY , 2004 .

[13]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[14]  Helmut Prodinger,et al.  The Hamming weight of the non-adjacent-form under various input statistics , 2007, Period. Math. Hung..

[15]  Clemens Heuberger Minimal expansions in redundant number systems: Fibonacci bases and Greedy algorithms , 2004, Period. Math. Hung..

[16]  Helmut Prodinger,et al.  Positional number systems with digits forming an arithmetic progression , 2008 .

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .