Clustering phenomena in quenched Al, Al–Mg, Al–Si and Al–Mg–Si alloys

[1]  J. Banhart,et al.  Reversion of natural ageing in Al-Mg-Si alloys , 2018, Acta Materialia.

[2]  P. Uggowitzer,et al.  Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging , 2016 .

[3]  J. Banhart,et al.  Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys , 2016, Journal of Materials Science.

[4]  Qiang-Yan Xu,et al.  Study of precipitation in Al–Mg–Si alloys by Atom Probe Tomography I. Microstructural changes as a function of ageing temperature , 2015 .

[5]  J. Banhart,et al.  Early stages of solute clustering in an Al-Mg-Si alloy , 2015 .

[6]  B. Klobes,et al.  Early stage ageing effects and shallow positron traps in Al–Mg–Si alloys , 2015 .

[7]  Meng Liu Clustering kinetics in Al-Mg-Si alloys investigated by positron annihilation techniques , 2014 .

[8]  Tatsuo Sato,et al.  Evaluation of Solute Clusters Associated with Bake-Hardening Response in Isothermal Aged Al-Mg-Si Alloys Using a Three-Dimensional Atom Probe , 2014, Metallurgical and Materials Transactions A.

[9]  P. Uggowitzer,et al.  Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. , 2014, Physical review letters.

[10]  J. Banhart,et al.  Influence of Pre-Straining and Pre-Ageing on the Age-Hardening Response of Al-Mg-Si Alloys , 2014 .

[11]  Matthew D. H. Lay,et al.  Vacancy Behavior and Solute Cluster Growth During Natural Aging of an Al-Mg-Si Alloy , 2012, Metallurgical and Materials Transactions A.

[12]  Zaoli Zhang,et al.  Influence of interrupted quenching on artificial aging of Al-Mg-Si alloys , 2012 .

[13]  P. Rometsch,et al.  A model for the thermodynamics of and strengthening due to co-clusters in Al–Mg–Si-based alloys , 2012 .

[14]  J. Banhart,et al.  Low-Temperature Differential Scanning Calorimetry of an Al-Mg-Si Alloy , 2011 .

[15]  J. Banhart,et al.  Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy , 2010, 1006.4778.

[16]  Karl Maier,et al.  On the age-hardening of an Al–Zn–Mg–Cu alloy: A vacancy perspective , 2011 .

[17]  Matthew D. H. Lay,et al.  Natural Aging in Al‐Mg‐Si Alloys – A Process of Unexpected Complexity , 2010 .

[18]  T. Masuda,et al.  Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0.6 mass %Mg-1.0 mass % Si alloy , 2010 .

[19]  P. Rometsch,et al.  Effect of Natural Ageing on the Artificial Ageing Response of an Al-Mg-Si-Cu Alloy , 2010 .

[20]  Tatsuo Sato,et al.  First-Principles Calculation of Interaction Energies between Solutes and/or Vacancies for Predicting Atomistic Behaviors of Microalloying Elements in Aluminum Alloys , 2007 .

[21]  A. Crosky,et al.  Secondary precipitation in an Al–Mg–Si–Cu alloy , 2007 .

[22]  J. Røyset,et al.  The Effect of Intermediate Storage Temperature and Time on the Age Hardening Response of Al-Mg-Si Alloys , 2006 .

[23]  Y. Birol Restoration of the bake hardening response in a naturally aged twin-roll cast AlMgSi automotive sheet , 2006 .

[24]  E. Zschech,et al.  Study of artificial aging in AlMgSi (6061) and AlMgSiCu (6013) alloys by Positron Annihilation , 2006 .

[25]  H. Weiland,et al.  The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022 , 2005 .

[26]  I. Procházka,et al.  The asset of ultra-fast digitizers for positron-lifetime spectroscopy , 2005 .

[27]  Y. Birol Pre-straining to improve the bake hardening response of a twin-roll cast Al¿Mg¿Si alloy , 2005 .

[28]  A. Khellaf,et al.  Quenching studies of lattice vacancies in high-purity aluminium , 2002 .

[29]  E. Zschech,et al.  Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy , 2000 .

[30]  R. Krause-Rehberg,et al.  Positron Annihilation in Semiconductors , 1999 .

[31]  K. Matsuda,et al.  High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg2Si alloy , 1998 .

[32]  L. Zhen,et al.  The effect of pre-aging on microstructure and tensile properties of Al-Mg-Si alloys , 1997 .

[33]  R. Krause-Rehberg,et al.  The data treatment influence on the spectra decomposition in positron lifetime spectroscopy Part 1: On the interpretation of multi-component analysis studied by Monte Carlo simulated model spectra , 1996 .

[34]  Saarinen,et al.  Shallow positron traps in GaAs. , 1989, Physical review. B, Condensed matter.

[35]  H. E. Hansen,et al.  Temperature dependence of positron annihilation parameters in neutron irradiated molybdenum , 1984 .

[36]  R. Nieminen,et al.  CORRIGENDUM: Defect spectroscopy with positrons: a general calculational method , 1983 .

[37]  T. Mae,et al.  On the Two-Step Aging Behavior of Al-1.3 wt%Mg 2 Si Alloy , 1974 .

[38]  A. Seeger Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques , 1973 .

[39]  G. Thomas Quenching defects in binary aluminium alloys , 1959 .

[40]  K. H. Westmacott,et al.  Dislocation sources in quenched aluminium-based alloys , 1959 .