RF angle of arrival-based node localisation

Several localisation algorithms exist for wireless sensor networks that use angle of arrival measurements to derive node position. However, there are limited options for actually obtaining the angle of arrival using resource-constrained devices. In this paper, we describe a technique for determining node bearings based on radio interferometric angle of arrival measurements from multiple anchor nodes to any number of target nodes at unknown positions. Least squares triangulation is then used to estimate node position. The position estimation is carried out by the node itself, hence the method is distributed, scalable, and fast. Furthermore, this technique does not require modification of the mote hardware because it relies only on the radio. Experimental results demonstrate that our approach can estimate node bearing with an average accuracy of 3°, and node position with sub-metre accuracy in approximately 1 s.

[1]  David E. Culler,et al.  Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services , 2006, Int. J. Ad Hoc Ubiquitous Comput..

[2]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[3]  Kutluyil Dogançay,et al.  Bearings-only target localization using total least squares , 2005, Signal Process..

[4]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Kay Römer The Lighthouse Location System for Smart Dust , 2003, MobiSys '03.

[6]  Rong Peng,et al.  Angle of Arrival Localization for Wireless Sensor Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[7]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[8]  A. Bugra Koku,et al.  Evaluation of egocentric navigation methods , 2005, ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005..

[9]  Polly Huang,et al.  Spinning beacons for precise indoor localization , 2008, SenSys '08.

[10]  Anshu Saksena,et al.  Distributed Inference for Network Localization Using Radio Interferometric Ranging , 2008, EWSN.

[11]  Polly Huang,et al.  Modeling and Optimizing Positional Accuracy Based on Hyperbolic Geometry for the Adaptive Radio Interferometric Positioning System , 2007, LoCA.

[12]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[13]  Joseph J. Carr,et al.  Practical Antenna Handbook , 1990 .

[14]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[15]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[16]  Theodore S. Rappaport,et al.  A beacon navigation method for autonomous vehicles , 1989 .

[17]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[18]  J. Friedman,et al.  Angle-of-arrival assisted Radio Interferometry (ARI) target localization , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[19]  Ákos Lédeczi,et al.  Radio interferometric tracking of mobile wireless nodes , 2007, MobiSys '07.

[20]  Natalya St. Clair,et al.  Conics , 2007 .

[21]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[22]  Miklós Maróti,et al.  Radio interferometric geolocation , 2005, SenSys '05.

[23]  Carlos Couto,et al.  Generalized geometric triangulation algorithm for mobile robot absolute self-localization , 2003, 2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692).

[24]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[25]  Xenofon D. Koutsoukos,et al.  Tracking mobile nodes using RF Doppler shifts , 2007, SenSys '07.

[26]  J.N. Ash,et al.  Robust System Multiangulation Using Subspace Methods , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[27]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[28]  Xenofon D. Koutsoukos,et al.  Mobile sensor localization and navigation using RF doppler shifts , 2008, MELT '08.

[29]  A. Nasipuri,et al.  Experimental Evaluation of an Angle Based Indoor Localization System , 2006, 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.

[30]  Antonis A. Argyros,et al.  Angle-based methods for mobile robot navigation: reaching the entire plane , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[32]  Andy Hopper,et al.  The Anatomy of a Context-Aware Application , 1999, Wirel. Networks.

[33]  Seth J. Teller,et al.  The cricket compass for context-aware mobile applications , 2001, MobiCom '01.

[34]  David E. Culler,et al.  Design of a wireless sensor network platform for detecting rare, random, and ephemeral events , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[35]  Xenofon Koutsoukos,et al.  Spatio-temporal awareness in mobile wireless sensor networks , 2010 .

[36]  Lee C. Potter,et al.  Sensor Network Localization via Received Signal Strength Measurements with Directional Antennas , 2004 .

[37]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[38]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .