Virtual Holonomic Constraints for Euler–Lagrange Systems

This technical brief investigates virtual holonomic constraints for Euler-Lagrange systems with n degrees-of-freedom and n-1 controls. In our framework, a virtual holonomic constraint is a relation specifying n-1 configuration variables in terms of a single angular configuration variable. The enforcement by feedback of such a constraint induces a desired repetitive behavior in the system. We give conditions under which a virtual holonomic constraint is feasible, i.e, it can be made invariant by feedback, and it is stabilizable. We provide sufficient conditions under which the dynamics on the constraint manifold correspond to an Euler- Lagrange system. These ideas are applied to the problem of swinging up an underactuated pendulum while guaranteeing that the second link does not fall over.

[1]  Carlo Rossi,et al.  Control of a camless engine electromechanical actuator: position reconstruction and dynamic performance analysis , 2004, IEEE Transactions on Industrial Electronics.

[2]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[3]  Henri Beghin Étude théorique des compas gyrostatiques Anschutz et Sperry , 1922 .

[4]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[5]  M. Paul Appell,et al.  Exemple de mouvement d’un point assujetti é une liaison exprimée par une relation non linéaire entre les composantes de la vitesse , 1911 .

[6]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[7]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[8]  Leonid B. Freidovich,et al.  Virtual-Holonomic-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[9]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[10]  A. Isidori Nonlinear Control Systems , 1985 .

[11]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[12]  N. N. Nekhoroshev,et al.  The Poincaré—Lyapunov—Liouville—Arnol'd theorem , 1994 .

[13]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[14]  Fathi H. Ghorbel,et al.  On the uniform boundedness of the inertia matrix of serial robot manipulators , 1998, J. Field Robotics.

[15]  J. Edward Colgate,et al.  Nonholonomic haptic display , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[16]  W. Blajer,et al.  Control of underactuated mechanical systems with servo-constraints , 2007 .

[17]  Carlos Canudas-de-Wit,et al.  On the concept of virtual constraints as a tool for walking robot control and balancing , 2004, Annu. Rev. Control..

[18]  R. Johansson,et al.  Periodic motions of the Pendubot via virtual holonomic constraints: Theory and experiments , 2008, Autom..

[19]  M. Spong,et al.  On the uniform boundedness of the inertia matrix of serial robot manipulators , 1998 .

[20]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[21]  W. Blajer,et al.  A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE Framework , 2004 .

[22]  Luca Consolini,et al.  Control of a bicycle using virtual holonomic constraints , 2010, 49th IEEE Conference on Decision and Control (CDC).

[23]  Domenico Prattichizzo,et al.  On a Class of Hierarchical Formations of Unicycles and Their Internal Dynamics , 2012, IEEE Transactions on Automatic Control.

[24]  Luca Consolini,et al.  Path following for the PVTOL aircraft , 2010, Autom..

[25]  Y. Golubev,et al.  Mechanical systems with servoconstraints , 2001 .

[26]  A. Shiriaev,et al.  Periodic motion planning for virtually constrained Euler-Lagrange systems , 2006, Syst. Control. Lett..

[27]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .