GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

[1]  Jason Sanders,et al.  CUDA by example: an introduction to general purpose GPU programming , 2010 .

[2]  A. Loeb,et al.  ESTIMATING THE PARAMETERS OF SAGITTARIUS A*'s ACCRETION FLOW VIA MILLIMETER VLBI , 2008, 0809.4490.

[3]  F. Ozel,et al.  The Amplitude Evolution and Harmonic Content of Millisecond Oscillations in Thermonuclear X-Ray Bursts , 2002, astro-ph/0204501.

[4]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[5]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[6]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[7]  E. Bertschinger,et al.  The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes , 2003, astro-ph/0309458.

[8]  G. Miniutti,et al.  Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.

[9]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[10]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[11]  J. Hawley,et al.  A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.

[12]  C. Gammie,et al.  grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT , 2009, 0909.0708.

[13]  C. Ftaclas,et al.  Hot spots on neutron stars - The near-field gravitational lens , 1982 .

[14]  J. Font,et al.  A new general relativistic magnetohydrodynamics code for dynamical spacetimes , 2008, 0804.4572.

[15]  Z. Stuchlík,et al.  RAGtime 4/5: Workshops on black holes and neutron stars , 2004 .

[16]  R. Romani,et al.  ApJ in press. Preprint typeset using L ATEX style emulateapj v. 11/12/01 RX J1856 − 3754: EVIDENCE FOR A STIFF EOS , 2002 .

[17]  Jonathan E. Grindlay,et al.  Constraints on Neutron Star Properties from X-Ray Observations of Millisecond Pulsars , 2006, astro-ph/0612791.

[18]  T. Johannsen,et al.  A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES , 2010, 1011.4078.

[19]  Radiative transfer along rays in curved space–times , 2005, astro-ph/0511515.

[20]  D. Leahy,et al.  Light Curves for Rapidly Rotating Neutron Stars , 2006, astro-ph/0609325.

[21]  T. Johannsen,et al.  A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. II. NEUTRON STARS , 2011, 1110.4389.

[22]  Eric Agol,et al.  A FAST NEW PUBLIC CODE FOR COMPUTING PHOTON ORBITS IN A KERR SPACETIME , 2009, 0903.0620.

[23]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[24]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[25]  Prateek Sharma,et al.  TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A* , 2010, 1005.0389.

[26]  C. Fryer,et al.  MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS, OUTBURSTS, AND QUASIPERIODICITY , 2006, astro-ph/0611269.

[27]  Yoshiharu Namba,et al.  The ASTRO-H X-ray Observatory , 2012, Other Conferences.

[28]  D. Lamb,et al.  Oscillation Waveforms and Amplitudes from Hot Spots on Neutron Stars , 2000, astro-ph/0001544.

[29]  M. Miller,et al.  Bounds on the Compactness of Neutron Stars from Brightness Oscillations during X-Ray Bursts , 1997, astro-ph/9711325.

[30]  Department of Physics,et al.  WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.

[31]  C. Done,et al.  Extreme gravitational lensing near rotating black holes , 2004, astro-ph/0411339.

[32]  S. Doeleman,et al.  MASSES OF NEARBY SUPERMASSIVE BLACK HOLES WITH VERY LONG BASELINE INTERFEROMETRY , 2012, 1201.0758.

[33]  C. Gammie,et al.  NEAR-INFRARED AND X-RAY QUASI-PERIODIC OSCILLATIONS IN NUMERICAL MODELS OF Sgr A* , 2012, 1201.1917.

[34]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[35]  D. Leahy,et al.  Limits on Mass and Radius for the Millisecond-Period X-Ray Pulsar SAX J1808.4?3658 , 2007, astro-ph/0703287.