Shape optimization problems for eigenvalues of elliptic operators
暂无分享,去创建一个
Dorin Bucur | Zakaria Belhachmi | Giuseppe Buttazzo | G. Buttazzo | D. Bucur | J. Sac-Épée | Z. Belhachmi | Jean-Marc Sac-Epee
[1] Dorin Bucur,et al. Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.
[2] Mark S. Ashbaugh,et al. Spectral Theory and Geometry: Isoperimetric and universal inequalities for eigenvalues , 1999 .
[3] Dorin Bucur,et al. N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .
[4] R. Benguria,et al. On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions , 1995 .
[5] D. Bucur. Regularity of Optimal Convex Shapes , 2003 .
[6] On the isoperimetric inequality for the buckling of a clamped plate , 2003 .
[7] Denise Chenais,et al. On the existence of a solution in a domain identification problem , 1975 .
[8] G. Reuter. LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .
[9] Dorin Bucur,et al. On the Problem of Optimal Cutting , 2002, SIAM J. Optim..
[10] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[11] On the motion of rigid bodies in a viscous incompressible fluid , 2003 .
[12] A. Chambolle,et al. Continuity of neumann linear elliptic problems on varying two—dimensional bounded open sets , 1997 .
[13] Mark S. Ashbaugh,et al. Open Problems on Eigenvalues of the Laplacian , 1999 .
[14] Dorin Bucur,et al. Boundary optimization under pseudo curvature constraint , 1996 .
[15] DORIN BUCUR,et al. A Duality Approach for the Boundary Variation of Neumann Problems , 2002, SIAM J. Math. Anal..
[16] Isabel N. Figueiredo,et al. On the attainable eigenvalues of the Laplace operator , 1999 .
[17] Edouard Oudet,et al. Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .
[18] J. Keller,et al. Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[19] Jacob T. Schwartz,et al. Linear operators. Part II. Spectral theory , 2003 .
[20] Giuseppe Buttazzo,et al. An existence result for a class of shape optimization problems , 1993 .
[21] Dorin Bucur,et al. Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[22] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[23] V. Sverák,et al. On optimal shape design , 1992 .
[24] D. Bucur,et al. Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks , 2006 .
[25] E. B. Davies,et al. Spectral stability of the Neumann Laplacian , 2001 .