Shape optimization problems for eigenvalues of elliptic operators

We consider a general formulation for shape optimization problems involving the eigenvalues of the Laplace operator. Both the cases of Dirichlet and Neumann conditions on the free boundary are studied. We survey the most recent results concerning the existence of optimal domains, and list some conjectures and open problems. Some open problems are supported by efficient numerical computations.

[1]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[2]  Mark S. Ashbaugh,et al.  Spectral Theory and Geometry: Isoperimetric and universal inequalities for eigenvalues , 1999 .

[3]  Dorin Bucur,et al.  N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .

[4]  R. Benguria,et al.  On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions , 1995 .

[5]  D. Bucur Regularity of Optimal Convex Shapes , 2003 .

[6]  On the isoperimetric inequality for the buckling of a clamped plate , 2003 .

[7]  Denise Chenais,et al.  On the existence of a solution in a domain identification problem , 1975 .

[8]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[9]  Dorin Bucur,et al.  On the Problem of Optimal Cutting , 2002, SIAM J. Optim..

[10]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[11]  On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[12]  A. Chambolle,et al.  Continuity of neumann linear elliptic problems on varying two—dimensional bounded open sets , 1997 .

[13]  Mark S. Ashbaugh,et al.  Open Problems on Eigenvalues of the Laplacian , 1999 .

[14]  Dorin Bucur,et al.  Boundary optimization under pseudo curvature constraint , 1996 .

[15]  DORIN BUCUR,et al.  A Duality Approach for the Boundary Variation of Neumann Problems , 2002, SIAM J. Math. Anal..

[16]  Isabel N. Figueiredo,et al.  On the attainable eigenvalues of the Laplace operator , 1999 .

[17]  Edouard Oudet,et al.  Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .

[18]  J. Keller,et al.  Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[20]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[21]  Dorin Bucur,et al.  Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[23]  V. Sverák,et al.  On optimal shape design , 1992 .

[24]  D. Bucur,et al.  Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks , 2006 .

[25]  E. B. Davies,et al.  Spectral stability of the Neumann Laplacian , 2001 .