Thermodynamic study based on the phase diagram of the Na2O–MnO–Fe2O3 system for H2 production in three-step water splitting with Na2CO3/MnFe2O4/Fe2O3

[1]  N. Gokon,et al.  Studies on metal oxides suitable for enhancement of the O2-releasing step in water splitting by the MnFe2O4–Na2CO3 system , 2001 .

[2]  Hiroshi Kaneko,et al.  Enhancement of O2-releasing step with Fe2O3 in the water splitting by MnFe2O4–Na2CO3 system , 2001 .

[3]  Y. Tamaura,et al.  Multi-Step Water Splitting with Mn-Ferrite/Sodium Carbonate System , 1999 .

[4]  Y. Tamaura,et al.  Kinetics and Simulation on a High-Temperature Solar Thermochemical Energy Conversion Process on the Boudouard Reaction , 1999 .

[5]  Y. Tamaura,et al.  SOLAR HYDROGEN PRODUCTION BY USING FERRITES , 1999 .

[6]  A. Steinfeld Solar-processed metals as clean energy carriers and water-splitters , 1998 .

[7]  Abraham Kogan,et al.  Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study , 1998 .

[8]  Y. Tamaura,et al.  Thermochemical decomposition of H2O to H2 on cation-excess ferrite , 1996 .

[9]  J. Giménez,et al.  Photocatalytic degradation of phenol: Comparison between pilot-plant-scale and laboratory results , 1996 .

[10]  Sixto Malato,et al.  Large solar plant photocatalytic water decontamination: Degradation of atrazine , 1996 .

[11]  Robert Palumbo,et al.  Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat , 1996 .

[12]  A. Steinfeld,et al.  Coal Gasification Using the ZnO/Zn Redox System , 1996 .

[13]  A. Frei,et al.  Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMnx)1−yO , 1995 .

[14]  Yutaka Tamaura,et al.  Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle , 1995 .

[15]  H. Yokokawa,et al.  Thermodynamic database MALT2 and its applications to high temperature materials chemistry , 1994 .

[16]  Edward A. Fletcher,et al.  Reaction of steam with cellulose in a fluidized bed using concentrated sunlight , 1994 .

[17]  G. Pourcelly,et al.  Co-ion leakage through bipolar membranes Influence on I-V responses and water-splitting efficiency , 1994 .

[18]  R. Collins,et al.  Photosynthetic water splitting: in situ photoprecipitation of metallocatalysts for photoevolution of hydrogen and oxygen , 1994 .

[19]  M Lundberg Model calculations on some feasible two-step water splitting processes , 1993 .

[20]  E. A. Fletcher,et al.  Y2O3-doped ZrO2 membranes for solar electrothermal and solarthermal separations — II. Electron hole conductivity of yttria-stabilized zirconia , 1993 .

[21]  M. Sommer,et al.  Phase formation in Na2O−MnOx catalysts for oxidative dimerization of methane , 1991 .

[22]  S. Mizuta,et al.  Continuous flow system demonstration and evaluation of thermal efficiency for the magnesium-sulfur-iodine thermochemical water-splitting cycle , 1990 .

[23]  P. Franke,et al.  Thermodynamics of iron manganese mixed oxides at high temperatures , 1990 .

[24]  Roland Winston,et al.  High Collection Nonimaging Optics , 1989, Other Conferences.

[25]  J. Nitsch,et al.  Hydrogen as an energy carrier : technologies, systems, economy , 1988 .

[26]  G. H. Bauer,et al.  Water-Splitting Methods , 1988 .

[27]  C. Johnson,et al.  Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials , 1981 .

[28]  E. A. Fletcher,et al.  Hydrogen- and Oxygen from Water , 1977, Science.

[29]  T. Nakamura,et al.  Hydrogen production from water utilizing solar heat at high temperatures , 1977 .

[30]  S. Ihara Feasibility of hydrogen production by direct water splitting at high temperature , 1976 .