Exploring Low Loss and Single Mode in Antiresonant Tube Lattice Terahertz Fibers

We propose and numerically analyze various hollow-core antiresonant fiber (HC-ARF) for operation at terahertz frequencies. We compare typical HC-ARF designs with nested and adjacent nested designs while analyzing performance in terms of loss and single-mode guidance of terahertz waves. With optimized fiber dimensions, the fundamental core mode, cladding mode, core higher-order modes (HOMs), and the angle dependence of adjacent tubes are analyzed to find the best design for low loss terahertz transmission. Analysis of the fiber designs shows that the nested tube-based antiresonant fiber exhibits lower transmission loss and superior HOM suppression, exceeding 140. The nested HC-ARF is feasible for fabrication using existing fabrication technologies and opening up the possibility of efficient transmission of terahertz waves.

[1]  Derek Abbott,et al.  Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. , 2018, Applied optics.

[2]  Peter Uhd Jepsen,et al.  Porous-core honeycomb bandgap THz fiber. , 2011, Optics letters.

[3]  L. Vincetti,et al.  Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes. , 2012, Optics express.

[4]  Ole Bang,et al.  Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. , 2015, Optics express.

[5]  Cristiano M. B. Cordeiro,et al.  3D Printed Hollow Core Fiber with Negative Curvature for Terahertz Applications , 2015 .

[6]  Luca Vincetti,et al.  Terahertz Tube Lattice Fibers With Octagonal Symmetry , 2010, IEEE Photonics Technology Letters.

[7]  Luca Vincetti,et al.  Waveguiding mechanism in tube lattice fibers. , 2010, Optics express.

[8]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[9]  R. J. Weiblen,et al.  Negative curvature fibers , 2017 .

[10]  Ole Bang,et al.  Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Walter Belardi,et al.  Hollow antiresonant fibers with low bending loss. , 2014, Optics express.

[12]  Alexander Argyros,et al.  THz propagation in kagome hollow-core microstructured fibers. , 2011, Optics express.

[13]  A. Argyros,et al.  Flexible tube lattice fibers for terahertz applications. , 2013, Optics express.

[14]  Gotzon Aldabaldetreku,et al.  Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres , 2018 .

[15]  E. N. Fokoua,et al.  3D-printed polymer antiresonant waveguides for short-reach terahertz applications. , 2018, Applied optics.

[16]  Alexander B. Sotsky,et al.  Eight-Capillary Cladding THz Waveguide With Low Propagation Losses and Dispersion , 2018, IEEE Transactions on Terahertz Science and Technology.

[17]  Francesco Poletti,et al.  Nested antiresonant nodeless hollow core fiber. , 2014, Optics express.

[18]  Xin Wang,et al.  Demonstration of low-loss flexible fiber with Zeonex tube-lattice cladding for Terahertz transmission , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[19]  Christos Markos,et al.  Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance , 2018, Optics Communications.

[20]  Mitsunobu Miyagi,et al.  Flexible terahertz fiber optics with low bend-induced losses , 2007 .

[21]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[22]  D. Grischkowsky,et al.  THz Sommerfeld wave propagation on a single metal wire , 2005 .

[23]  D. Mittleman Sensing with terahertz radiation , 2003 .

[24]  Jesper Lægsgaard,et al.  Hollow-core fibers for high power pulse delivery. , 2016, Optics express.

[25]  M. Skorobogatiy,et al.  Low loss porous terahertz fibers containing multiple subwavelength holes , 2008 .

[26]  Wei Ding,et al.  Bending loss characterization in nodeless hollow-core anti-resonant fiber. , 2016, Optics express.

[27]  D. Abbott,et al.  Broadband Characterization of Glass and Polymer Materials Using THz-TDS , 2019, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[28]  Christos Markos,et al.  Single-mode, low loss hollow-core anti-resonant fiber designs. , 2019, Optics express.

[29]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[30]  Derek Abbott,et al.  Terahertz Sensing in a Hollow Core Photonic Crystal Fiber , 2018, IEEE Sensors Journal.

[31]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[32]  Luca Vincetti,et al.  Fano Resonances in Polygonal Tube Fibers , 2012, Journal of Lightwave Technology.

[33]  Luca Vincetti,et al.  Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications , 2009 .

[34]  Derek Abbott,et al.  Terahertz dielectric waveguides , 2013 .

[35]  Georges Humbert,et al.  Simplified hollow-core photonic crystal fiber , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[36]  Ci-Ling Pan,et al.  Terahertz air-core microstructure fiber , 2008 .

[37]  Nail Akhmediev,et al.  Positive and negative curvatures nested in an antiresonant hollow-core fiber. , 2017, Optics letters.

[38]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[39]  Derek Abbott,et al.  THz porous fibers: design, fabrication and experimental characterization. , 2009, Optics express.

[40]  Derek Abbott,et al.  A Novel Approach for Spectroscopic Chemical Identification Using Photonic Crystal Fiber in the Terahertz Regime , 2018, IEEE Sensors Journal.

[41]  Ja-Yu Lu,et al.  Low-loss subwavelength plastic fiber for terahertz waveguiding. , 2005, Optics letters.

[42]  Mohammad Faisal,et al.  Porous core photonic crystal fibre for ultra-low material loss in THz regime , 2016, IET Commun..

[43]  E. Dianov,et al.  Light transmission in negative curvature hollow core fiber in extremely high material loss region. , 2013, Optics express.

[44]  P. Russell,et al.  Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. , 2016, Optics letters.

[45]  A. Argyros,et al.  Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared. , 2007, Optics express.

[46]  Peter Uhd Jepsen,et al.  Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding , 2015, Scientific Reports.

[47]  S. Leon-Saval,et al.  Reducing the Size of Hollow Terahertz Waveguides , 2011, Journal of Lightwave Technology.