Programmatic perspectives with technical examples for THz materials characterization

THz technology has a rich history of use in the field of interstellar molecule identification where a variety of molecule specific vibrational and rotational spectroscopic signatures exist and has been aggressively investigated for use in advanced radar applications because of the immediate improvement in object resolution obtained at higher frequencies. Traditionally, high power THz systems have relied upon millimeter wave sources and frequency multiplication techniques to achieve acceptable output power levels, while lower power, table top spectroscopic systems, have relied on broadband incoherent light sources. With the advent of high power lasers, advances in non-linear optics, and new material systems, a number of promising techniques for the generation, detection and manipulation of THz radiation are currently under development and are considered the enabling technologies behind a variety of advanced THz applications. This work presents a programmatic overview of current trends in THz technology of interest to a variety of government organizations. It focuses on those techniques currently under investigation for the generation and detection of THz fields motivated, for example, by such diverse applications as metamaterial spectroscopy, TH imaging, long standoff chem/bio detection and THz communications. Examples of these new techniques will be presented which in turn will motivate the need for the characterization of application specific active and passive THz components.

[1]  See Leang Chin,et al.  Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[2]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[3]  Zhen Tian,et al.  Terahertz superconductor metamaterial , 2010 .

[4]  K. Yngvesson,et al.  Wideband IF-Integrated Terahertz HEB Mixers: Modeling and Characterization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[5]  P. Siegel THz Instruments for Space , 2007, IEEE Transactions on Antennas and Propagation.

[6]  Robert Osiander,et al.  Terahertz waves for communications and sensing , 2004 .

[7]  D. C. Tsui,et al.  Observation of the Two-Dimensional Plasmon in Silicon Inversion Layers , 1977 .

[8]  Gautam Medhi,et al.  Long-wave infrared surface plasmon grating coupler. , 2010, Applied optics.

[9]  Stefan A. Maier,et al.  Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing , 2004 .

[10]  Walter R. Buchwald,et al.  Tunable two-dimensional plasmon resonances in an InGaAs/InP high electron mobility transistor , 2009 .

[11]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[12]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[13]  Giorgio Biasiol,et al.  Microcavity polariton splitting of intersubband transitions. , 2003, Physical review letters.

[14]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[15]  Phillip M. Grice,et al.  Lab measurements to support modeling terahertz propagation in brownout conditions , 2010, Defense + Commercial Sensing.

[16]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[17]  Eric R. Mueller,et al.  Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors , 2005, SPIE OPTO.

[18]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[19]  H. Gibbs,et al.  Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. , 2010, Optics express.

[20]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[23]  Willie J. Padilla,et al.  Electromagnetic Metamaterials for Terahertz Applications , 2008 .

[24]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[25]  David Chapman,et al.  Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .

[26]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[27]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[28]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[29]  R. Soref,et al.  Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial. , 2010, Optics express.

[30]  Mircea Dragoman,et al.  Plasmonics: Applications to nanoscale terahertz and optical devices , 2008 .

[31]  Richard A. Soref,et al.  IR permittivities for silicides and doped silicon , 2010 .

[32]  Willie J Padilla,et al.  Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications , 2010 .

[33]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[34]  C M Soukoulis,et al.  Effective medium theory of left-handed materials. , 2004, Physical review letters.

[35]  Keith A. Nelson,et al.  High-power THz generation, THz nonlinear optics and THz nonlinear spectroscopy , 2008 .

[36]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[38]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[39]  John L. Reno,et al.  Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors , 2002 .

[40]  Jean-Michel Gérard,et al.  Strong-coupling regime for quantum boxes in pillar microcavities: Theory , 1999 .

[41]  D. W. van der Weide,et al.  Gas absorption spectroscopy with electronic terahertz techniques , 1998, 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171).

[42]  Shi-ning Zhu,et al.  Negative refraction with magnetic resonance in a metallic double-ring metamaterial , 2008 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.