Optimum Integration Time for UWB Transmitted Reference and Energy Detector Receivers

Determining the optimum integration interval in transmitted reference (TR) and energy detector receivers in UWB radio is non-trivial. Recently a diffusion channel model was proposed for UWB indoor propagation channels. This paper shows that the choice of the optimum integration time that minimizes the error probability can be obtained from the diffusion model in a computationally inexpensive algorithm. The algorithm can be effectively implemented with analog devices to inform the receiver of the optimum stopping time, without precise information about the channel model parameters. By using the obtained optimum stopping time, superior performance is achieved with respect to a computationally extensive averaged/GLRT analysis.

[1]  Craig K. Rushforth Transmitted-reference techniques for random or unknown channels , 1964, IEEE Trans. Inf. Theory.

[2]  Larry J. Greenstein,et al.  An impulse response model for residential wireless channels , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[3]  Rittwik Jana,et al.  Measurement and modeling of an ultra-wide bandwidth indoor channel , 2004, IEEE Transactions on Communications.

[4]  Y.-L. Chao Optimal integration time for UWB transmitted reference correlation receivers , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[5]  Sedki M. Riad,et al.  Path-loss and time dispersion parameters for indoor UWB propagation , 2006, IEEE Transactions on Wireless Communications.

[6]  Robert A. Scholtz,et al.  Ultra-wideband transmitted reference systems , 2005, IEEE Transactions on Vehicular Technology.

[7]  M. E. Sahin,et al.  Optimization of energy detector receivers for UWB systems , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[8]  R.A. Scholtz,et al.  A diffusion model for UWB indoor propagation , 2004, IEEE MILCOM 2004. Military Communications Conference, 2004..

[9]  Eugene Wong,et al.  Stochastic processes in information and dynamical systems , 1979 .

[10]  R.A. Scholtz,et al.  A Parametric Analytical Diffusion Model for Indoor Ultra-Wideband Received Signal , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[11]  V. Tarokh,et al.  A statistical path loss model for in-home UWB channels , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[12]  G.R. Aiello,et al.  Design of a multiband OFDM system for realistic UWB channel environments , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  H. Urkowitz Energy detection of unknown deterministic signals , 1967 .

[14]  H. Engelbert On Optimal Stopping Rules for Markov Processes with Continuous Time , 1975 .

[15]  Optimal Stopping of the Integral of a Wiener Process , 1976 .

[16]  Robert A. Scholtz,et al.  Optimal and suboptimal receivers for ultra-wideband transmitted reference systems , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[17]  Robert C. Qiu,et al.  A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design , 2002, IEEE J. Sel. Areas Commun..

[18]  R. Hoctor,et al.  Delay-hopped transmitted-reference RF communications , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[19]  Moe Z. Win,et al.  A statistical model for the UWB indoor channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[20]  Robert A. Scholtz,et al.  Template estimation in ultra-wideband radio , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[21]  Moe Z. Win,et al.  Ultra-wide bandwidth signal propagation for indoor wireless communications , 1997, Proceedings of ICC'97 - International Conference on Communications.

[22]  Luis H. R. Alvarez,et al.  Singular Stochastic Control, Linear Diffusions, and Optimal Stopping: A Class of Solvable Problems , 2000, SIAM J. Control. Optim..

[23]  A. G. Fakeev Optimal Stopping Rules for Stochastic Processes with Continuous Parameter , 1970 .

[24]  Urbashi Mitra,et al.  Generalized UWB transmitted reference systems , 2006, IEEE Journal on Selected Areas in Communications.

[25]  D. Cassioli,et al.  Time domain propagation measurements of the UWB indoor channel using PN-sequence in the FCC-compliant band 3.6-6 GHz , 2005, IEEE Transactions on Antennas and Propagation.

[26]  A. G. Fakeev Optimal Stopping of a Markov Process , 1971 .

[27]  John G. Proakis,et al.  Digital Communications , 1983 .