A class of constacyclic BCH codes

Constacyclic codes are a subclass of linear codes and have been well studied. Constacyclic BCH codes are a family of constacyclic codes and contain BCH codes as a subclass. Compared with the in-depth study of BCH codes, there are relatively little study on constacyclic BCH codes. The objective of this paper is to determine the dimension and minimum distance of a class of q -ary constacyclic BCH codes of length q m − 1 q − 1 $\frac {q^{m}-1}{q-1}$ with designed distances δ i = q m − 1 − q ⌊ m − 3 2 ⌋ + i − 1 q − 1 $\delta _{i}=q^{m-1}-\frac {q^{\lfloor \frac {m-3}2 \rfloor +i }-1}{q-1}$ for 1 ≤ i ≤ min { ⌈ m + 1 2 ⌉ − ⌊ m q + 1 ⌋ , ⌈ m − 1 2 ⌉ } $1\leq i\leq \min \limits \{\lceil \frac {m+1}2 \rceil -\lfloor \frac {m}{q+1} \rfloor , \lceil \frac {m-1}2 \rceil \}$ . As will be seen, some of these codes are optimal.

[1]  Cunsheng Ding,et al.  Seven Classes of Three-Weight Cyclic Codes , 2013, IEEE Transactions on Communications.

[2]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[3]  Gennian Ge,et al.  Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes , 2017, Des. Codes Cryptogr..

[4]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[5]  Lin Xiaoyan Quantum cyclic and constacyclic codes , 2004, IEEE Transactions on Information Theory.

[6]  Qin Yue,et al.  Complete weight distributions of two classes of cyclic codes , 2017, Cryptography and Communications.

[7]  Garry Hughes Constacyclic codes, cocycles and a u+v | u-v construction , 2000, IEEE Trans. Inf. Theory.

[8]  Yang Liu,et al.  A class of constacyclic BCH codes and new quantum codes , 2017, Quantum Inf. Process..

[9]  Sihem Mesnager,et al.  A class of narrow-sense BCH codes over $\mathbb {F}_q$ of length $\frac{q^m-1}{2}$ , 2019, Des. Codes Cryptogr..

[10]  Cunsheng Ding,et al.  Narrow-Sense BCH Codes over $\gf(q)$ with Length $n=\frac{q^m-1}{q-1}$ , 2016, ArXiv.

[11]  Daniel J. Katz,et al.  Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth , 2012, J. Comb. Theory, Ser. A.

[12]  Kai-Uwe Schmidt,et al.  Symmetric bilinear forms over finite fields with applications to coding theory , 2014, Journal of Algebraic Combinatorics.

[13]  Chengju Li,et al.  Hamming Weights of the Duals of Cyclic Codes With Two Zeros , 2014, IEEE Transactions on Information Theory.

[14]  Shuxing Li,et al.  The Minimum Distance of Some Narrow-Sense Primitive BCH Codes , 2017, SIAM J. Discret. Math..

[15]  Qin Yue,et al.  Several Classes of Cyclic Codes With Either Optimal Three Weights or a Few Weights , 2015, IEEE Transactions on Information Theory.

[16]  Lei Hu,et al.  Generalized Kasami Sequences: The Large Set , 2005, IEEE Transactions on Information Theory.

[17]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[18]  Cunsheng Ding,et al.  Narrow-Sense BCH Codes Over $ {\mathrm {GF}}(q)$ With Length $n=\frac {q^{m}-1}{q-1}$ , 2016, IEEE Transactions on Information Theory.

[20]  Qin Yue,et al.  The weight distributions of constacyclic codes , 2017, Adv. Math. Commun..

[21]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[22]  A. K. Bhandari,et al.  A Note on the Weight Distribution of Minimal Constacyclic Codes , 2016 .

[23]  Shixin Zhu,et al.  A Construction of New MDS Symbol-Pair Codes , 2015, IEEE Transactions on Information Theory.

[24]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[25]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[26]  Giuliano G. La Guardia On optimal constacyclic codes , 2013, ArXiv.

[27]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[28]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[29]  Shudi Yang,et al.  The weight distributions of two classes of p-ary cyclic codes with few weights , 2015, Finite Fields Their Appl..

[30]  Gennian Ge,et al.  On the Weight Distribution of Cyclic Codes With Niho Exponents , 2014, IEEE Transactions on Information Theory.

[31]  Rudolf Lide,et al.  Finite fields , 1983 .

[32]  Patrick Solé,et al.  Two New Families of Two-Weight Codes , 2016, IEEE Transactions on Information Theory.

[33]  Chengju Li,et al.  Weight distributions of cyclic codes with respect to pairwise coprime order elements , 2013, Finite Fields Their Appl..

[34]  Tao Zhang,et al.  Some New Classes of Quantum MDS Codes From Constacyclic Codes , 2015, IEEE Transactions on Information Theory.

[35]  R. McEliece Irreducible Cyclic Codes and Gauss Sums , 1975 .

[36]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[37]  Cunsheng Ding,et al.  The Bose and Minimum Distance of a Class of BCH Codes , 2015, IEEE Transactions on Information Theory.

[38]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[39]  Yuansheng Tang,et al.  Exponential Sums, Cyclic Codes and Sequences: the Odd Characteristic Kasami Case , 2009, ArXiv.

[40]  Sihem Mesnager,et al.  A class of narrow-sense BCH codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} , 2019, Designs, Codes and Cryptography.

[41]  T. Kasami WEIGHT DISTRIBUTION OF BOSE-CHAUDHURI-HOCQUENGHEM CODES. , 1966 .

[42]  Cunsheng Ding,et al.  The dimension and minimum distance of two classes of primitive BCH codes , 2016, Finite Fields Their Appl..

[43]  Hongwei Liu,et al.  On the weight distributions of a class of cyclic codes , 2018, Discret. Math..

[44]  Shixin Zhu,et al.  A Class of Narrow-Sense BCH Codes , 2019, IEEE Transactions on Information Theory.

[45]  Wan Zhexian,et al.  Non-symmetric association schemes of symmetric matrices , 1993 .

[46]  Jacques Wolfmann Projective two-weight irreducible cyclic and constacyclic codes , 2008, Finite Fields Their Appl..

[47]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[48]  Cunsheng Ding,et al.  Three-weight cyclic codes and their weight distributions , 2016, Discret. Math..

[49]  Cunsheng Ding,et al.  Parameters of Several Classes of BCH Codes , 2015, IEEE Transactions on Information Theory.

[50]  Qin Yue,et al.  The primitive idempotents and weight distributions of irreducible constacyclic codes , 2018, Des. Codes Cryptogr..

[51]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[52]  Jørn M. Jensen A class of constacyclic codes , 1994, IEEE Trans. Inf. Theory.

[53]  Yangxian Wang,et al.  Association Schemes of Quadratic Forms and Symmetric Bilinear Forms , 2003 .

[54]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.