Strategic dynamic vehicle routing with spatio-temporal dependent demands

We study a zero-sum game formulation of a dynamic vehicle routing problem: a system planner seeks to design dynamic routing policies for a team of vehicles to minimize the average waiting time of demands that are strategically placed in a region by an adversarial agent with unitary capacity operating from a depot. We characterize an equilibrium in the limiting case where vehicles travel arbitrarily slower than the agent (heavy load). We show that such an equilibrium consists of a routing policy based on performing successive TSP tours through outstanding demands and a unique power-law spatial density centered at the depot location.

[1]  Christos D. Tarantilis,et al.  Dynamic Vehicle Routing Problems , 2014, Vehicle Routing.

[2]  Edward K. Wong,et al.  A survey on the maximum entropy method and parameter spectral estimation , 1990 .

[3]  Haiping Xu Optimal policies for stochastic and dynamic vehicle routing problems , 1994 .

[4]  P. Buchen,et al.  The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.

[5]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[6]  Rufus Isaacs,et al.  Differential Games , 1965 .

[7]  Dimitri P. Bertsekas,et al.  Convex Optimization Theory , 2009 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[10]  J. Borwein,et al.  Duality relationships for entropy-like minimization problems , 1991 .

[11]  D. Bertsimas,et al.  Stochastic and dynamic vehicle routing with general demand and interarrival time distributions , 1993, Advances in Applied Probability.

[12]  Jonathan M. Borwein,et al.  Probability Distributions of Assets Inferred from Option Prices via the Principle of Maximum Entropy , 2003, SIAM J. Optim..

[13]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[14]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[15]  Marc Teboulle,et al.  A dual approach to multidimensional L p spectral estimation problems , 1988 .

[16]  Wansoo T. Rhee On the Stochastic Euclidean Travelling Salesperson Problem for Distributions with Unbounded Support , 1993, Math. Oper. Res..

[17]  Xiaolei Ma,et al.  Vehicle Routing Problem , 2013 .

[18]  W. Marsden I and J , 2012 .

[19]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[20]  Dimitris Bertsimas,et al.  Stochastic and Dynamic Vehicle Routing in the Euclidean Plane with Multiple Capacitated Vehicles , 1993, Oper. Res..

[21]  Emilio Frazzoli,et al.  Dynamic Vehicle Routing for Robotic Systems , 2011, Proceedings of the IEEE.

[22]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[23]  Pierre Moulin,et al.  On the existence and characterization of the maxent distribution under general moment inequality constraints , 2005, IEEE Transactions on Information Theory.

[24]  Emilio Frazzoli,et al.  Efficient Routing Algorithms for Multiple Vehicles With no Explicit Communications , 2009, IEEE Transactions on Automatic Control.

[25]  Solomon Kullback,et al.  Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.

[26]  H N Psaraftis,et al.  DYNAMIC VEHICLE ROUTING PROBLEMS. VEHICLE ROUTING: METHODS AND STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS - VOLUME 16 , 1988 .

[27]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[28]  Paolo Toth,et al.  Models, relaxations and exact approaches for the capacitated vehicle routing problem , 2002, Discret. Appl. Math..

[29]  Jonathan M. Borwein,et al.  Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..

[30]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[31]  Dimitris Bertsimas,et al.  A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane , 1991, Oper. Res..

[32]  D. Rossmo,et al.  Hunting patterns and geographic profiling of white shark predation , 2009 .

[33]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Emilio Frazzoli,et al.  Persistent patrol with limited-range on-board sensors , 2010, 49th IEEE Conference on Decision and Control (CDC).

[35]  Richard C. Larson,et al.  Urban Operations Research , 1981 .

[36]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[37]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[38]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[39]  Martin,et al.  Finite size and dimensional dependence in the Euclidean traveling salesman problem. , 1996, Physical review letters.

[40]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..