Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

[1]  Matej Praprotnik,et al.  Coupling different levels of resolution in molecular simulations. , 2009, The Journal of chemical physics.

[2]  J. M. J. van Leeuwen,et al.  Asymptotic Time Behavior of Correlation Functions. 1. Kinetic Terms , 1971 .

[3]  R. Winkler,et al.  Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids , 2008, 0808.2157.

[4]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[5]  G De Fabritiis,et al.  Multiscale modeling of liquids with molecular specificity. , 2006, Physical review letters.

[6]  M. Graham,et al.  Cross-stream migration of flexible molecules in a nanochannel. , 2006, Physical review letters.

[7]  R. Winkler,et al.  Dynamic properties of molecular chains with variable stiffness , 1995 .

[8]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[9]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[11]  R. Winkler,et al.  Dynamic structure factor of semiflexible macromolecules in dilute solution , 1996 .

[12]  B. U. Felderhof Hydrodynamic interactions in suspensions , 1990 .

[13]  L.Delle Site,et al.  Some fundamental problems for an energy-conserving adaptive-resolution molecular dynamics scheme. , 2007, 0709.2579.

[14]  E. Sackmann,et al.  Dynamic Light Scattering from Semidilute Actin Solutions: A Study of Hydrodynamic Screening, Filament Bending Stiffness, and the Effect of Tropomyosin/Troponin-Binding , 1996 .

[15]  Pep Español,et al.  Hamiltonian adaptive resolution simulation for molecular liquids. , 2012, Physical review letters.

[16]  Flekkoy,et al.  Foundations of dissipative particle dynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  P Español,et al.  Statistical mechanics of Hamiltonian adaptive resolution simulations. , 2014, The Journal of chemical physics.

[18]  R. Winkler,et al.  Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study. , 2014, Soft matter.

[19]  J. Haile Molecular Dynamics Simulation , 1992 .

[20]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  K. Kremer,et al.  Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations , 2014, 1412.6810.

[22]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[23]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[24]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[25]  T Ihle,et al.  Transport coefficients for stochastic rotation dynamics in three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Roland G Winkler,et al.  Stress tensors of multiparticle collision dynamics fluids. , 2008, The Journal of chemical physics.

[27]  G De Fabritiis,et al.  Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Matej Praprotnik,et al.  Concurrent triple-scale simulation of molecular liquids. , 2008, The Journal of chemical physics.

[29]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[30]  L Mahadevan,et al.  Polymer science and biology: structure and dynamics at multiple scales. , 2008, Faraday discussions.

[31]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[32]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[33]  R. Winkler,et al.  Dynamical and Rheological Properties of Ultrasoft Colloids under Shear Flow , 2013 .

[34]  Marco Zoppi,et al.  Dynamics of the liquid state , 1994 .

[35]  R. Becker,et al.  Theory of Heat , 1967 .

[36]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[37]  R. Winkler,et al.  Finite size distribution and partition functions of Gaussian chains: maximum entropy approach , 1992 .

[38]  Matej Praprotnik,et al.  Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Gerhard Gompper,et al.  Migration of semiflexible polymers in microcapillary flow , 2010, 1006.4485.

[40]  Gerhard Gompper,et al.  Hydrodynamic correlations in multiparticle collision dynamics fluids. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  G. Nägele,et al.  Influence of hydrodynamic interactions on long-time diffusion in charge-stabilized colloids , 1997 .

[42]  Sergio R. Aragon,et al.  Dynamics of wormlike chains , 1985 .

[43]  Matej Praprotnik,et al.  Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. , 2009, The Journal of chemical physics.

[44]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[46]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[47]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[48]  G Gompper,et al.  Dynamic regimes of fluids simulated by multiparticle-collision dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  R. Winkler,et al.  Synchronization, Slippage, and Unbundling of Driven Helical Flagella , 2013, PloS one.

[50]  K. Kremer,et al.  Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. , 2005, The Journal of chemical physics.

[51]  A. Ladd,et al.  Lattice Boltzmann Simulations of Soft Matter Systems , 2008, 0803.2826.

[52]  Gerhard Gompper,et al.  Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations , 2010, J. Comput. Phys..

[53]  O. B. Usta,et al.  Flow-induced migration of polymers in dilute solution , 2006 .

[54]  Hiroshi Noguchi,et al.  Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  P Koumoutsakos,et al.  Control of density fluctuations in atomistic-continuum simulations of dense liquids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  S. Yip,et al.  Sound dispersion in simple liquids , 1974 .

[57]  R. Winkler,et al.  Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution. , 2013, The Journal of chemical physics.

[58]  M. Rex,et al.  Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids , 2007, The European physical journal. E, Soft matter.

[59]  L. G. Leal,et al.  Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics. , 2015, The Journal of chemical physics.

[60]  Petros Koumoutsakos,et al.  Control algorithm for multiscale flow simulations of water. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  J. M. Hill,et al.  On three simple experiments to determine slip lengths , 2009 .

[62]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[63]  Richard L. Rowley,et al.  Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations , 1997 .

[64]  T. Ihle,et al.  Erratum: Multi-particle collision dynamics: Flow around a circular and a square cylinder , 2001, cond-mat/0110148.

[65]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[66]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[67]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[68]  T Ihle,et al.  Equilibrium calculation of transport coefficients for a fluid-particle model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[70]  Gerhard Gompper,et al.  Thermostat for nonequilibrium multiparticle-collision-dynamics simulations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  J. F. Ryder,et al.  Transport coefficients of a mesoscopic fluid dynamics model , 2003, cond-mat/0302451.

[72]  Robert Zwanzig,et al.  Hydrodynamic Theory of the Velocity Correlation Function , 1970 .

[73]  S. A. Karabasov,et al.  Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics , 2014, J. Comput. Phys..