Disorder-induced exceptional and hybrid point rings in Weyl/Dirac semimetals

Non-Hermiticity in Weyl Hamiltonian leads to the realization of Weyl exceptional rings and flat bands inside the Weyl exceptional rings. Recently, the platform of non-Hermitian physics is extended to many-body or disordered systems where quasiparticles possess finite lifetime. Here, we clarify that the deviation from unitarity limit in a disordered Weyl semimetal leads to the generation of Weyl exceptional rings regardless of the detail of the scattering potential. In the case of topological Dirac semimetals, hybrid rings and flat bands without vorticity of complex-energy eigenvalues are realized. This scenario is applicable to any Weyl or Dirac semimetals. These effects are detectable by using photoemission or quasiparticle interference experiments.

[1]  N. Kawakami,et al.  Chiral-symmetry protected exceptional torus in correlated nodal-line semimetals , 2019, Physical Review B.

[2]  J. Rau,et al.  Non-Hermitian topology of spontaneous magnon decay , 2019, Physical Review B.

[3]  N. Hatano Exceptional points of the Lindblad operator of a two-level system , 2019, Molecular Physics.

[4]  K. Kawabata,et al.  Classification of Exceptional Points and Non-Hermitian Topological Semimetals. , 2019, Physical review letters.

[5]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[6]  T. Seyller,et al.  Extremely flat band in bilayer graphene , 2018, Science Advances.

[7]  N. Kawakami,et al.  Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry , 2018, Physical Review B.

[8]  T. Yokoyama,et al.  Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries , 2018, Physical Review B.

[9]  K. Moors,et al.  Disorder-driven exceptional lines and Fermi ribbons in tilted nodal-line semimetals , 2018, Physical Review B.

[10]  Flore K. Kunst,et al.  Symmetry-protected nodal phases in non-Hermitian systems , 2018, Physical Review B.

[11]  Kevin P. Chen,et al.  Experimental realization of a Weyl exceptional ring , 2018, Nature Photonics.

[12]  N. Kawakami,et al.  Non-Hermitian perspective of the band structure in heavy-fermion systems , 2018, Physical Review B.

[13]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[14]  Huitao Shen,et al.  Quantum Oscillation from In-Gap States and a Non-Hermitian Landau Level Problem. , 2018, Physical review letters.

[15]  M. Papaj,et al.  Nodal arc of disordered Dirac fermions and non-Hermitian band theory , 2018, Physical Review B.

[16]  Y. Ashida,et al.  Parity-time-symmetric topological superconductor , 2018, Physical Review B.

[17]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[18]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[19]  A. Zyuzin,et al.  Flat band in disorder-driven non-Hermitian Weyl semimetals , 2017, 1710.05344.

[20]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[21]  R. Nandkishore,et al.  Single-particle excitations in disordered Weyl fluids , 2017, 1701.00783.

[22]  L. Duan,et al.  Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. , 2016, Physical review letters.

[23]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[24]  D. Huse,et al.  Rare region induced avoided quantum criticality in disordered three-dimensional Dirac and Weyl semimetals , 2016, 1602.02742.

[25]  Taylor L. Hughes,et al.  Phase diagrams of disordered Weyl semimetals , 2015, 1509.02933.

[26]  J. Sau,et al.  Dirty Weyl semimetals: Stability, phase transition, and quantum criticality , 2015, 1507.07551.

[27]  M. Sato,et al.  Topological Superconductivity in Dirac Semimetals. , 2015, Physical review letters.

[28]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[29]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[30]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[31]  T. Ohtsuki,et al.  Density of states scaling at the semimetal to metal transition in three dimensional topological insulators. , 2013, Physical review letters.

[32]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[33]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[34]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[35]  E. Fradkin,et al.  Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. , 1986, Physical review. B, Condensed matter.