Composite machine tool structures for high speed milling machines

Abstract To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. However, the productivity of mold manufacturing has not increased significantly because CNC milling machines have massive slides, which do not allow rapid acceleration and deceleration during the frequent starts/stops encountered in machining molds and dies. This paper presents the use of composites for these slides to overcome this limitation. The vertical and horizontal slides of a large CNC machine were constructed by bonding high-modulus carbon-fiber epoxy composite sandwiches to welded steel structures using adhesives. These composite structures reduced the weight of the vertical and horizontal slides by 34% and 26%, respectively, and increased damping by 1.5 to 5.7 times without sacrificing the stiffness. Without much tuning, this machine had a positional accuracy of ± 5μm per 300 mm of the slide displacement.