Design and fabrication of a micro-compliant amplifier with a topology optimal compliant mechanism integrated with a piezoelectric microactuator

This paper describes the new way that using topology optimum compliant mechanism and PZT microactuator to design a large force and compliant amplifier mechanism. The common shorting of the microactuator devices is the relation of inverse ratio appears between the output force and output displacement. The mechanism uses the PZT microactuator to be the input and utilize the compliant mechanism to enhance the output displacement. This study uses the PZT microactuator that has 3000mum length, 2000mum width, 500mum thickness and analyses the different performance of microactuator with different applied voltages, width of beam and thickness. In the study, we define the compliant amplifier design domain as 4000mum times 5000mum, thickness as 500mum, and discuss the effect for different optimization parameters. The driving input is a PZT microactuator that can actuate about 6000muN output force to the displacement amplifier and consequently the device can generate about 28mum output displacement when two voltages are applied

[1]  Noboru Kikuchi,et al.  Design of piezoelectric transducers using topology optimization , 1999 .

[2]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[3]  G. K. Ananthasuresh,et al.  Designing compliant mechanisms , 1995 .

[4]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[5]  G. K. Ananthasuresh,et al.  On an optimal property of compliant topologies , 2000 .

[6]  Sridhar Kota,et al.  Static Shape Control of Smart Structures Using Compliant Mechanisms , 1999 .

[7]  Ruichong Zhang,et al.  Nonlinear Dynamics of Compliant Offshore Structures , 1997 .

[8]  G. K. Ananthasuresh,et al.  Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation , 1999, Micro-Electro-Mechanical Systems (MEMS).

[9]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[10]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[11]  Ashwin A. Seshia,et al.  On the optimization of compliant force amplifier mechanisms for surface micromachined resonant accelerometers , 2004 .

[12]  Ole Sigmund,et al.  Compliant thermal microactuators , 1999 .

[13]  Ole Sigmund Systematic design of electrothermomechanical microactuators using topology optimization , 1998 .

[14]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[15]  Arthur G. Erdman,et al.  Computer-Aided Mechanism Design: Now and the Future , 1995 .

[16]  Sridhar Kota,et al.  An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms , 1999 .

[17]  Peter Vettiger,et al.  High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS , 1998 .

[18]  Shinji Nishiwaki,et al.  Design of flextensional transducers using homogenization design method , 1999, Smart Structures.

[19]  G. K. Ananthasuresh,et al.  Design and Fabrication of Microelectromechanical Systems , 1994 .

[20]  P. Vettiger,et al.  High-aspect-ratio, ultrathick, negative-tone near-uv photoresist for MEMS applications , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.