Features in Content-based Image Retrieval Systems: a Survey

This article provides a framework to describe and compare content-based image retrieval systems. Sixteen contemporary systems are described in detail, in terms of the following technical aspects: querying, relevance feedback, result presentation, features, and matching. For a total of 44 systems we list the features that are used. Of these systems, 35 use any kind of color features, 28 use texture, and only 25 use shape features.

[1]  Marco La Cascia,et al.  Image Digestion and Relevance Feedback in the ImageRover WWW Search Engine , 1997 .

[2]  Hideyuki Tamura,et al.  Image database systems: A survey , 1984, Pattern Recognit..

[3]  M. Lew Content Based Image Retrieval : KLT , Projections , or Templates , 1996 .

[4]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[5]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[6]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[7]  Thomas S. Huang,et al.  Supporting similarity queries in MARS , 1997, MULTIMEDIA '97.

[8]  Alberto Del Bimbo,et al.  Visual Querying By Color Perceptive Regions , 1998, Pattern Recognit..

[9]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  William I. Grosky,et al.  Multimedia information systems , 1994, IEEE MultiMedia.

[11]  Shih-Fu Chang,et al.  Querying by color regions using VisualSEEk content-based visual query system , 1997 .

[12]  David A. Forsyth,et al.  Body plans , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[14]  K SrihariRohini,et al.  Intelligent Indexing and Semantic Retrieval of Multimodal Documents , 2000 .

[15]  Vijay V. Raghavan,et al.  Content-Based Image Retrieval Systems - Guest Editors' Introduction , 1995, Computer.

[16]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[17]  James Ze Wang,et al.  Wavelet-based image indexing techniques with partial sketch retrieval capability , 1997, Proceedings of ADL '97 Forum on Research and Technology. Advances in Digital Libraries.

[18]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[19]  Nozha Boujemaa,et al.  Surfimage: a flexible content-based image retrieval system , 1998, MULTIMEDIA '98.

[20]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[21]  R. Manmatha,et al.  Syntactic characterization of appearance and its application to image retrieval , 1997, Electronic Imaging.

[22]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[23]  Peter Stanchev,et al.  Content-Based Image Retrieval Systems , 2001 .

[24]  Ze-Nian Li,et al.  Illumination Invariance and Object Model in Content-Based Image and Video Retrieval , 1999, J. Vis. Commun. Image Represent..

[25]  Otthein Herzog,et al.  Video retrieval by still-image analysis with ImageMiner , 1997, Electronic Imaging.