Salient Object Detection and Segmentation

Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object extraction algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, highquality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut for high quality salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

[1]  H. Teuber Physiological psychology. , 1955, Annual review of psychology.

[2]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[3]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[4]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[5]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[6]  Touradj Ebrahimi,et al.  The JPEG2000 still image coding system: an overview , 2000, IEEE Trans. Consumer Electron..

[7]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[9]  Björn Stenger,et al.  Shape context and chamfer matching in cluttered scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[11]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[12]  P. König,et al.  Does luminance‐contrast contribute to a saliency map for overt visual attention? , 2003, The European journal of neuroscience.

[13]  Horst Bischof,et al.  Detecting Distinguished Regions by Saliency , 2003, SCIA.

[14]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[15]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[16]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, CVPR 2004.

[17]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[18]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[19]  Byoung Chul Ko,et al.  Object-of-interest image segmentation based on human attention and semantic region clustering. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[22]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Ariel Shamir,et al.  Seam Carving for Content-Aware Image Resizing , 2007, ACM Trans. Graph..

[24]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  O. Sorkine,et al.  Optimized scale-and-stretch for image resizing , 2008, SIGGRAPH 2008.

[26]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[27]  Baoxin Li,et al.  A two-stage approach to saliency detection in images , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[29]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[30]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[31]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[32]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[33]  C. Kennard,et al.  The role of visual salience in directing eye movements in visual object agnosia , 2009, Current Biology.

[34]  Longin Jan Latecki,et al.  Shape band: A deformable object detection approach , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  Ralph R. Martin,et al.  A Shape‐Preserving Approach to Image Resizing , 2009, Comput. Graph. Forum.

[37]  Horst Bischof,et al.  Saliency driven total variation segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Shi-Min Hu,et al.  Sketch2Photo: internet image montage , 2009, ACM Trans. Graph..

[39]  Ariel Shamir,et al.  Cropping Scaling Seam carving Warping Multi-operator , 2009 .

[40]  Shi-Min Hu,et al.  RepFinder: finding approximately repeated scene elements for image editing , 2010, ACM Trans. Graph..

[41]  Sabine Süsstrunk,et al.  Saliency detection using maximum symmetric surround , 2010, 2010 IEEE International Conference on Image Processing.

[42]  Marc Alexa,et al.  An evaluation of descriptors for large-scale image retrieval from sketched feature lines , 2010, Comput. Graph..

[43]  Paria Mehrani,et al.  Saliency Segmentation based on Learning and Graph Cut Refinement , 2010, BMVC.

[44]  Esa Rahtu,et al.  Segmenting Salient Objects from Images and Videos , 2010, ECCV.

[45]  Zhuowen Tu,et al.  Learning Context-Sensitive Shape Similarity by Graph Transduction , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[47]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[48]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[49]  Marc Alexa,et al.  Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors , 2011, IEEE Transactions on Visualization and Computer Graphics.

[50]  Hong Liu,et al.  Web-image driven best views of 3D shapes , 2011, The Visual Computer.

[51]  Amir Rosenfeld,et al.  Extracting foreground masks towards object recognition , 2011, 2011 International Conference on Computer Vision.

[52]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[53]  Yu Fu,et al.  Visual saliency detection by spatially weighted dissimilarity , 2011, CVPR 2011.

[54]  Stephen Lin,et al.  Semantic colorization with internet images , 2011, ACM Trans. Graph..

[55]  Hua Huang,et al.  Arcimboldo-like collage using internet images , 2011, ACM Trans. Graph..

[56]  Qi Tian,et al.  Less is More: Efficient 3-D Object Retrieval With Query View Selection , 2011, IEEE Transactions on Multimedia.

[57]  Jianxiong Xiao,et al.  What makes an image memorable , 2011 .

[58]  N. Mitra,et al.  Interactive Images: Cuboid Proxies for Smart Image Manipulation , 2012 .

[59]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Shih-Fu Chang,et al.  Mobile product search with Bag of Hash Bits and boundary reranking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Frédo Durand,et al.  A Benchmark of Computational Models of Saliency to Predict Human Fixations , 2012 .

[63]  Lihi Zelnik-Manor,et al.  Saliency for image manipulation , 2013, The Visual Computer.

[64]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Ralph R. Martin,et al.  Internet visual media processing: a survey with graphics and vision applications , 2013, The Visual Computer.

[66]  Shi-Min Hu,et al.  PoseShop: Human Image Database Construction and Personalized Content Synthesis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[67]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Ali Borji,et al.  Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study , 2013, IEEE Transactions on Image Processing.

[69]  Shi-Min Hu,et al.  SalientShape: group saliency in image collections , 2013, The Visual Computer.

[70]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.