Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers

High-speed modulation and 4.4 fJ bit−1 data transmission is demonstrated using a photonic-crystal nanocavity laser. Its current threshold of 4.8 µA, modulation current efficiency of 2.0 GHz µA−0.5 and output power of 2.17 µW may enable on-chip photonic networks in combination with recently developed high-sensitivity receivers.

[1]  M. Notomi,et al.  First demonstration of 4-bit, 40-Gb/s optical RAM chip using integrated photonic crystal nanocavities , 2012, 2012 International Conference on Photonics in Switching (PS).

[2]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[3]  Yasuhiko Arakawa,et al.  Room temperature continuous-wave lasing in photonic crystal nanocavity. , 2006, Optics express.

[4]  Masaya Notomi,et al.  Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. , 2012, Optics express.

[5]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[6]  Osamu Mikami,et al.  1.55 µm GaInAsP/InP Distributed Feedback Lasers , 1981 .

[7]  Hong-Gyu Park,et al.  Characteristics of electrically driven two-dimensional photonic crystal lasers , 2005, IEEE Journal of Quantum Electronics.

[8]  W. E. Krag,et al.  SEMICONDUCTOR MASER OF GaAs , 1962 .

[9]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[10]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[11]  Uri C. Weiser,et al.  Interconnect-power dissipation in a microprocessor , 2004, SLIP '04.

[12]  K. Choquette,et al.  Electrically injected InGaAs/GaAs photonic crystal membrane light emitting microcavity with spatially localized gain , 2008 .

[13]  M. Notomi,et al.  10-Gbit/s direct modulation of optically pumped InGaAlAs multiple-quantum-well photonic-crystal nanocavity laser up to 100°C , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[14]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[15]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[16]  Masaya Notomi,et al.  High-Temperature Operation of Photonic-Crystal Lasers for On-Chip Optical Interconnection , 2012, IEICE Trans. Electron..

[17]  Yuichi Matsushima,et al.  Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm , 1981 .

[18]  John E. Bowers,et al.  Propagation delays and transition times in pulse-modulated semiconductor lasers , 1986 .

[19]  Masaya Notomi,et al.  20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. , 2011, Optics express.

[20]  J. Bowers,et al.  High performance Ge/Si avalanche photodiodes development in intel , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[21]  Masaya Notomi,et al.  Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate. , 2006, Optics express.

[22]  A. Karlsson,et al.  On the linewidth of microcavity lasers , 1992 .

[23]  H. C. Casey,et al.  Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback , 1975 .

[24]  Yoshio Noguchi,et al.  CW operation of DFB-BH GaInAsP/InP lasers in 1.5 μm wavelength region , 1982 .

[25]  M. Notomi,et al.  High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted , 2010 .

[26]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[27]  Philip Moser,et al.  Energy-Efficient VCSELs for Interconnects , 2012, IEEE Photonics Journal.

[28]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[29]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.