A Generalized Normative Segmentation Methodology Employing Conjoint Analysis

Since the pioneering research of Wendell Smith (1956), the concept of market segmentation has been one of the most pervasive activities in both the marketing academic literature and practice. In addition to being one of the major ways of operationalizing the marketing concept, marketing segmentation provides guidelines for a firm’s marketing strategy and resource allocation among markets and products. Facing heterogeneous markets, a firm employing a market segmentation strategy can typically increase expected profitability as suggested by the classic price discrimination model which provides the major theoretical rationale for market segmentation (cf. Frank, Massey and Wind 1972).

[1]  Kohsuke Ogawa,et al.  An Approach to Simultaneous Estimation and Segmentation in Conjoint Analysis , 1987 .

[2]  Michael R. Hagerty,et al.  Improving the Predictive Power of Conjoint Analysis: The use of Factor Analysis and Cluster Analysis , 1985 .

[3]  William L. Moore,et al.  Levels of Aggregation in Conjoint Analysis: An Empirical Comparison , 1980 .

[4]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[5]  M. Wedel,et al.  A fuzzy clusterwise regression approach to benefit segmentation , 1989 .

[6]  Dick R. Wittink,et al.  Commercial use of conjoint analysis in Europe: Results and critical reflections , 1994 .

[7]  Paul E. Green,et al.  A new approach to market segmentation , 1977 .

[8]  Michel Wedel,et al.  Latent class metric conjoint analysis , 1992 .

[9]  David Stewart,et al.  The Application and Misapplication of Factor Analysis in Marketing Research , 1981 .

[10]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[11]  Vijay Mahajan,et al.  An Approach to Normative Segmentation , 1978 .

[12]  W. Kamakura A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments , 1988 .

[13]  W. DeSarbo,et al.  Combinatorial Optimization Approaches to Constrained Market Segmentation: An Application to Industrial Market Segmentation , 1998 .

[14]  Paul E. Green,et al.  Segmenting Markets with Conjoint Analysis , 1991 .

[15]  M. Wedel,et al.  Metric Conjoint Segmentation Methods: A Monte Carlo Comparison , 1996 .

[16]  Yoram Wind,et al.  Issues and Advances in Segmentation Research , 1978 .

[17]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[18]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[19]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[20]  Russell I. Haley Benefit Segmentation: A Decision-oriented Research Tool , 1968 .

[21]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[22]  Girish N. Punj,et al.  Cluster Analysis in Marketing Research: Review and Suggestions for Application , 1983 .

[23]  Ke Te Le Mei Ru He Deng Yi Marketing management: analysis. planning. implementation and control , 2000 .

[24]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[25]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[26]  Michel Wedel,et al.  Concomitant Variable Latent Class Models for Conjoint Analysis , 1994 .

[27]  Wendell R. Smith Product Differentiation and Market Segmentation as Alternative Marketing Strategies , 1956 .

[28]  Wayne S. DeSarbo,et al.  A latent class probit model for analyzing pick any/N data , 1991 .

[29]  Steven H. Cohen,et al.  Market segmentation with choice-based conjoint analysis , 1995 .

[30]  H. Spath Cluster Dissection and Analysis , 1985 .

[31]  Xianggui Qu,et al.  Multivariate Data Analysis , 2007, Technometrics.

[32]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[33]  Paul E. Green,et al.  Modifying Cluster-Based Segments to Enhance Agreement with an Exogenous Response Variable , 1996 .

[34]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[35]  Philippe Cattin,et al.  Alternative Estimation Methods for Conjoint Analysis: A Monté Carlo Study , 1981 .

[36]  M. Wedel,et al.  Consumer benefit segmentation using clusterwise linear regression , 1989 .

[37]  Jonathan F. Bard,et al.  Engineering Optimization: Theory and Practice, Third Edition , 1997 .

[38]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[39]  Frederick W. Winter,et al.  A Cost-Benefit Approach to Market Segmentation , 1979 .

[40]  Henrik Sattler,et al.  Commercial Use of Conjoint Analysis , 2008 .

[41]  Michel Wedel,et al.  Fuzzy clusterwise regression in benefit segmentation: Application and investigation into its validity , 1993 .

[42]  Wayne S. DeSarbo,et al.  Constrained classification: The use of a priori information in cluster analysis , 1984 .

[43]  Rabikar Chatterjee,et al.  Analyzing Constant-Sum Multiple Criterion Data: A Segment-level Approach , 1995 .

[44]  Paul E. Green,et al.  Cross-Validation Assessment of Alternatives to Individual-Level Conjoint Analysis: A Case Study , 1989 .

[45]  P. Kotler Marketing Management: Analysis, Planning, Implementation and Control , 1972 .