Rate constants for the reactions H+O2→OH+O and D+O2→OD+O over the temperature range 1085–2278 K by the laser photolysis–shock tube technique

Rate constants for the reactions (1) H+O2→OH+O and (2) D+O2→OD+O have been measured over the temperature ranges 1103–2055 K and 1085–2278 K, respectively. The experimental method that has been used is the laser‐photolysis–shock‐tube technique. This technique utilizes atomic resonance absorption spectrophotometry (ARAS) to monitor H‐ or D‐atom depletion in the presence of a large excess of reactant, O2. The results can be well represented by the Arrhenius expressions k1(T)=(1.15±0.16)×10−10  exp(−6917±193 K/T) cm3 molecule−1 s−1, and k2(T)=(1.09±0.20)×10−10  exp(−6937±247 K/T) cm3 molecule−1 s−1. Over the experimental temperature range, the present results show that the isotope effect is unity within experimental uncertainty. The Arrhenius equations, k−1(T)=(8.75±1.24) ×10−12 exp(1121±193 K/T) cm3 molecule−1 s−1 and k−2 (T)=(9.73±1.79)×10−12 exp(526±247 K/T) cm3 molecule−1 s−1, for the rate constants of the reverse reactions were calculated from the experimentally measured forward rate constants and expres...

[1]  M. Frenklach,et al.  Determination of the rate coefficient for the reaction hydrogen atom + oxygen .fwdarw. hydrogen + oxygen atom by a shock tube/laser absorption/detailed modeling study , 1991 .

[2]  Ronald K. Hanson,et al.  Shock tube study of the reaction hydrogen atom + oxygen .fwdarw. hydroxyl + oxygen atom using hydroxyl laser absorption , 1990 .

[3]  J. Michael,et al.  Rate constants for the reaction deuterium atom + water-d2 .fwdarw. deuterium + hydroxyl-d by the flash photolysis-shock tube technique over the temperature range 1285-2261 K: results for the back-reaction and a comparison to the protonated case , 1990 .

[4]  A. Wagner,et al.  Theoretical studies of fine‐structure effects and long‐range forces: Potential‐energy surfaces and reactivity of O(3P)+OH(2Π) , 1990 .

[5]  G. Nyman,et al.  A low‐energy quasiclassical trajectory study of O(3P)+OH(2Π) →O2(3Σ−g)+H(2S). I. Cross sections and reaction dynamics , 1990 .

[6]  J. L. Durant,et al.  Rate constants for hydrogen atom + oxygen + M from 298 to 639 K for M = helium nitrogen and water , 1989 .

[7]  J. Michael Rate constants for the reaction O+D2→OD+D by the flash photolysis–shock tube technique over the temperature range 825–2487 K: The H2 to D2 isotope effect , 1989 .

[8]  J. Sutherland,et al.  Rate constants for the reactions of hydrogen atom with water and hydroxyl with hydrogen by the flash photolysis-shock tube technique over the temperature range 1246-2297 K , 1988 .

[9]  A. Varandas,et al.  A realistic hydroperoxo(~X2A") potential energy surface from the double many-body expansion method , 1988 .

[10]  James A. Miller Nonstatistical effects and detailed balance in quasiclassical trajectory calculations of the thermal rate coefficient for O+OH→O2+H , 1986 .

[11]  J. Sutherland,et al.  The thermodynamic state of the hot gas behind reflected shock waves: Implication to chemical kinetics† , 1986 .

[12]  J. Sutherland,et al.  Rate constant for the reaction, atomic hydrogen + ammonia, over the temperature range, 750-1777 K , 1986 .

[13]  R. Maki,et al.  Lyman-.alpha. photometry: curve of growth determination, comparison to theoretical oscillator strength, and line absorption calculations at high temperature , 1985 .

[14]  J. Sutherland,et al.  The flash photolysis—shock tube technique using atomic resonance absorption for kinetic studies at high temperatures , 1985 .

[15]  P. Frank,et al.  High temperature reaction rate for H+O2=OH+O and OH+H2=H2O+H , 1985 .

[16]  J. Troe,et al.  High-pressure falloff curves and specific rate constants for the reactions atomic hydrogen + molecular oxygen .dblharw. perhydroxyl .dblharw. hydroxyl + atomic oxygen , 1985 .

[17]  D. Clary,et al.  Quantum calculations on the rate constant for the O + OH reaction , 1984 .

[18]  C. Westbrook,et al.  Chemical kinetic modeling of hydrocarbon combustion , 1984 .

[19]  D. Truhlar,et al.  Variational transition state theory calculations for an atom--radical reaction with no saddle point: O+OH , 1983 .

[20]  K. Westberg,et al.  Chemical Kinetic Data Sheets for High‐Temperature Chemical Reactions , 1983 .

[21]  R. Gordon,et al.  Kinetics of the Cl–H2 system. II. Abstraction vs exchange in D+HCl , 1983 .

[22]  A. N. Syverud,et al.  JANAF Thermochemical Tables, 1982 Supplement , 1982 .

[23]  Paul J. Crutzen,et al.  Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement I CODATA Task Group on Chemical Kinetics , 1982 .

[24]  James A. Miller Kinetic isotope effects: Theoretical prediction of the thermal rate coefficient for the reaction D+O2→OD+O , 1981 .

[25]  H. Wagner,et al.  Eine kombinierte Blitzlichtphotolyse/ Stoßwellenuntersuchung zur Kinetik der Reaktion OH + NH3 → NH2 + H2O bei 1350 K , 1981 .

[26]  R. Watson,et al.  Temperature dependence of the reaction O(3P) + OH(2II) .fwdarw. O2 + H , 1980 .

[27]  R. Blint,et al.  The potential energy surface of the HO2 molecular system , 1979 .

[28]  Garry L. Schott,et al.  Further studies of exponential branching rates in reflected-shock heated, nonstoichiometric H2COO2 systems , 1973 .

[29]  John N. Bradley,et al.  Flame and combustion phenomena , 1969 .

[30]  J. Barker,et al.  Experimental Estimate of the Oscillator Strength of the P2 32,12 ←S2 12 Transition of the Hydrogen Atom , 1968 .

[31]  A. L. Myerson,et al.  Atom‐Formation Rates behind Shock Waves in Hydrogen and the Effect of Added Oxygen , 1966 .