Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond

Abstract The diffusion coefficient is a key property of materials. Electrochemical impedance spectroscopy (EIS) is a routine tool to determine the diffusion coefficient. Albeit being versatile for varied electrochemical systems and powerful in distinguishing multiple processes in a wide frequency spectrum, the EIS method usually needs a physical model in data analysis; misuse of models leads researchers to provide unwarranted interpretation of EIS data. Regarding diffusion, the simple and elegant formula developed by Warburg has been serving as the canonical model for more than a century. The classical Warburg model has very strict assumptions, however, it is used in a wide range of scenarios where assumptions may not be satisfied. It is the main purpose of the present article to define the boundary of applicability of the Warburg model and develop alternative models for cases beyond the boundary. In so doing, the Warburg model is revisited and its limitations and assumptions are scrutinized. Afterwards, new impedance models for more complicated and realistic scenarios are developed. The present article features: (1) generalization of the boundary condition when treating diffusion in bounded space and geometrical variants; (2) diffusion impedance in porous electrodes and fractals; (3) the effect of electrostatic interactions and coupling between diffusion and migration on the diffusion impedance in electrolytic solutions; (4) introduction of homotopy perturbation method to treat the convective diffusion; (5) physical interpretations of diffusion impedance behaviors.

[1]  Ricardo P. Nogueira,et al.  Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure , 2015 .

[2]  R. Parsons,et al.  Restricted diffusion impedance: Theory and application to the reaction of oxygen on a hydrogen phthalocyanine film , 1984 .

[3]  Ping Yu,et al.  Determination of the Lithium Ion Diffusion Coefficient in Graphite , 1999 .

[4]  A. V. Ivanishchev,et al.  Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries , 2014, Journal of Solid State Electrochemistry.

[5]  C. Montella,et al.  Diffusion–convection impedance using an efficient analytical approximation of the mass transfer function for a rotating disk , 2015 .

[6]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[7]  J. Ross Macdonald,et al.  Theory of space‐charge polarization and electrode‐discharge effects , 1973 .

[8]  C. Yap,et al.  Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra , 2017 .

[9]  U. Westerhoff,et al.  Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy , 2016 .

[10]  R. Kant Diffusion-Limited Reaction Rates on Self-Affine Fractals , 1997 .

[11]  M. Orazem,et al.  A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode , 1999 .

[12]  J. Newman,et al.  The Warburg Impedance in the Presence of Convective Flow , 1980 .

[13]  Jianbo Zhang,et al.  Theory of Impedance Response of Porous Electrodes: Simplifications, Inhomogeneities, Non-Stationarities and Applications , 2016 .

[14]  M. Orazem,et al.  The impedance response of rotating disk electrodes , 2015 .

[15]  G. Barbero,et al.  Role of the displacement current on Warburg-type behavior. , 2017, Physical review. E.

[16]  B. Boukamp Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg. , 2017 .

[17]  D. G. John,et al.  Diffusion impedance — An extended general analysis , 1980 .

[18]  M. Nakayama,et al.  Laplace transform impedance analysis in the two-phase coexistence reaction of spinel Li1 + xMn2O4 positive electrode , 2017, Journal of Solid State Electrochemistry.

[19]  Zhe Li,et al.  An Analytical Three-Scale Impedance Model for Porous Electrode with Agglomerates in Lithium-Ion Batteries , 2015 .

[20]  Partha P. Mukherjee,et al.  Influence of Microstructure on Impedance Response in Intercalation Electrodes , 2015 .

[21]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[22]  Bor Yann Liaw,et al.  Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations , 2016 .

[23]  Shijun Liao,et al.  On the homotopy analysis method for nonlinear problems , 2004, Appl. Math. Comput..

[24]  A. V. Ivanishchev,et al.  Modelling of electrochemically stimulated ionic transport in lithium intercalation compounds , 2017, Monatshefte für Chemie - Chemical Monthly.

[25]  J. Newman,et al.  Analytic Expression of the Warburg Impedance for a Rotating Disk Electrode , 1983 .

[26]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[27]  Larry C. Andrews,et al.  Special Functions Of Mathematics For Engineers , 2022 .

[28]  G. Barbero,et al.  Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Juan Bisquert,et al.  Influence of the boundaries in the impedance of porous film electrodes , 2000 .

[30]  Juan Bisquert,et al.  Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion , 1999 .

[31]  B. Tribollet,et al.  An Analytical Solution of the Nonsteady Convective Diffusion Equation for Rotating Electrodes , 1983 .

[32]  G. Barbero,et al.  Poisson–Nernst–Planck model with Chang-Jaffe, diffusion, and ohmic boundary conditions , 2016 .

[33]  Zhe Li,et al.  Analytical Solution to the Impedance of Electrode/Electrolyte Interface in Lithium-Ion Batteries , 2015 .

[34]  Minoru Umeda,et al.  Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods , 2003 .

[35]  J. Diard,et al.  Re-examination of the diffusion–convection impedance for a uniformly accessible rotating disk. Computation and accuracy , 2015 .

[36]  K. S. Smaran,et al.  Optimisation of Potential Boundaries with Dynamic Electrochemical Impedance Spectroscopy for an Anodic Half‐Cell Based on Organic–Inorganic Hybrid Electrolytes , 2015 .

[37]  Thierry Poinot,et al.  Bounded diffusion impedance characterization of battery electrodes using fractional modeling , 2017, Commun. Nonlinear Sci. Numer. Simul..

[38]  R. Armstrong Impedance plane display for an electrode with diffusion restricted to a thin layer , 1986 .

[39]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .

[40]  A. Kulikovsky A model for impedance of a PEM fuel cell cathode with poor electron conductivity , 2017 .

[41]  A. Compte,et al.  Theory of the electrochemical impedance of anomalous diffusion , 2001 .

[42]  G. Barbero,et al.  Analysis of Warburg's impedance and its equivalent electric circuits. , 2017, Physical chemistry chemical physics : PCCP.

[43]  J. Ramos-Barrado,et al.  A generalized Warburg impedance for a nonvanishing relaxation process , 1996 .

[44]  I. A. Ivanishcheva,et al.  Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data , 2016, Ionics.

[45]  Zhe Li,et al.  An Agglomerate Model for the Impedance of Secondary Particle in Lithium-Ion Battery Electrode , 2014 .

[46]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[47]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[48]  J. Macdonald BINARY ELECTROLYTE SMALL-SIGNAL FREQUENCY RESPONSE , 1974 .

[49]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[50]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[51]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[52]  Minoru Inaba,et al.  Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder , 1998 .

[53]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[54]  S. Moon,et al.  Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements , 1999 .

[55]  D. Franceschetti,et al.  DIFFUSION OF NEUTRAL AND CHARGED SPECIES UNDER SMALL- SIGNAL A.C. CONDITIONS * , 1979 .

[56]  W. Smyrl,et al.  Rigorous Treatment of Rotating Disk Electrode Impedance Data Over the Entire Frequency Range , 1990 .

[57]  D. Schuhmann,et al.  Migration-diffusion coupling and the concept of electrochemical impedance , 1970 .

[58]  D. Aurbach,et al.  Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous Composite Electrodes for Li-ion Batteries , 2004 .

[59]  G. Barbero Theoretical interpretation of Warburg's impedance in unsupported electrolytic cells. , 2017, Physical chemistry chemical physics : PCCP.

[60]  J. Diard,et al.  Linear diffusion impedance. General expression and applications , 1999 .

[61]  Albert Compte,et al.  Anomalous transport effects in the impedance of porous film electrodes , 1999 .

[62]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[63]  Sapoval,et al.  Electrical response of fractal and porous interfaces. , 1988, Physical review. A, General physics.

[64]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[65]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  S. Fedotov,et al.  Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material , 2017 .

[67]  Matsuhiko Nishizawa,et al.  Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods , 2001 .

[68]  Salim Erol,et al.  The influence of anomalous diffusion on the impedance response of LiCoO 2 |C batteries , 2015 .

[69]  C. Montella EIS study of hydrogen insertion under restricted diffusion conditions: I. Two-step insertion reaction , 2001 .

[70]  Heon-Cheol Shin,et al.  Lithium Transport Through Electrode with Irregular/Partially Inactive Interfaces , 2012 .

[71]  M. Z. Bazant,et al.  Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes , 2012, 1205.6539.

[72]  R. Kumar,et al.  Theory of Anomalous Diffusion Impedance of Realistic Fractal Electrode , 2008 .

[73]  D. Schuhmann,et al.  Comparison of Some Solutions for the Warburg Impedance of a Rotating Disk Electrode , 1975 .

[74]  S. R. Taylor,et al.  Physical Interpretation of the Warburg Impedance , 1995 .

[75]  Á. Molina,et al.  Analytical solution of the convection-diffusion equation for uniformly accessible rotating disk electrodes via the homotopy perturbation method , 2017 .

[76]  V. Muralidharan,et al.  Warburg impedance ‐ basics revisited , 1997 .

[77]  B. Tribollet,et al.  Diffusion Impedance in a Thin-Layer Cell: Experimental and Theoretical Study on a Large-Disk Electrode , 2008 .

[78]  Minoru Umeda,et al.  Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon , 2001 .

[79]  Bernard A. Boukamp,et al.  Interpretation of the Gerischer impedance in solid state ionics , 2003 .

[80]  Minoru Umeda,et al.  Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode , 2001 .

[81]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[82]  Andrei Kulikovsky,et al.  Analytical physics–based impedance of the cathode catalyst layer in a PEM fuel cell at typical working currents , 2017 .

[83]  Weishan Li,et al.  Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 < x < 1) by electrochemical impedance spectroscopy , 2007 .

[84]  Partha P. Mukherjee,et al.  Diffusion Induced Damage and Impedance Response in Lithium-Ion Battery Electrodes , 2014 .

[85]  D. Finegan,et al.  Simulated impedance of diffusion in porous media , 2017 .

[86]  Joo-Young Go,et al.  Fractal Approach to Rough Surfaces and Interfaces in Electrochemistry , 2006 .