Robust classification of multivariate time series by imprecise hidden Markov models

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[3]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[4]  G. Shafer The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance , 1982 .

[5]  I. Levi,et al.  The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance , 1983 .

[6]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[7]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[8]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[9]  Jonathan Karl Kies,et al.  Empirical methods for evaluating video-mediated collaborative work , 1998 .

[10]  Mineichi Kudo,et al.  Multidimensional curve classification using passing-through regions , 1999, Pattern Recognit. Lett..

[11]  Marco Zaffalon The naive credal classifier , 2002 .

[12]  Enrico Fagiuoli,et al.  Tree-Based Credal Networks for Classification , 2003, Reliab. Comput..

[13]  Gert de Cooman,et al.  Updating beliefs with incomplete observations , 2003, Artif. Intell..

[14]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[15]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  M. Reinders,et al.  Multi-Dimensional Dynamic Time Warping for Gesture Recognition , 2007 .

[19]  Marco Zaffalon,et al.  Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of Bayesian networks , 2008, Int. J. Approx. Reason..

[20]  Gert de Cooman,et al.  Sensitivity analysis for finite Markov chains in discrete time , 2008, UAI.

[21]  John R. Hershey,et al.  Variational Bhattacharyya divergence for hidden Markov models , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  Mikhail Belkin,et al.  DATA SPECTROSCOPY: EIGENSPACES OF CONVOLUTION OPERATORS AND CLUSTERING , 2008, 0807.3719.

[23]  Damjan Skulj,et al.  Discrete time Markov chains with interval probabilities , 2009, Int. J. Approx. Reason..

[24]  R. Vidal,et al.  Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[26]  Damjan Skulj,et al.  Imprecise Markov chains with absorption , 2010, Int. J. Approx. Reason..

[27]  Fabio Cuzzolin,et al.  Credal Sets Approximation by Lower Probabilities: Application to Credal Networks , 2010, IPMU.

[28]  Gert de Cooman,et al.  Epistemic irrelevance in credal nets: The case of imprecise Markov trees , 2010, Int. J. Approx. Reason..

[29]  F. Coolen,et al.  Interval-valued regression and classication models in the framework of machine learning , 2011 .

[30]  Giorgio Corani,et al.  Likelihood-Based Naive Credal Classifier , 2011 .

[31]  Marco Zaffalon,et al.  Utility-Based Accuracy Measures to Empirically Evaluate Credal Classifiers , 2011 .

[32]  Action Recognition by Imprecise Hidden Markov Models , 2011 .

[33]  Gert de Cooman,et al.  A New Method for Learning Imprecise Hidden Markov Models , 2012, IPMU.

[34]  Alessandro Antonucci An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics , 2012, Belief Functions.

[35]  Giorgio Corani,et al.  Likelihood-Based Robust Classification with Bayesian Networks , 2012, IPMU.

[36]  P. Sanguansat Multiple Multidimensional Sequence Alignment Using Generalized Dynamic Time Warping , 2012 .

[37]  Bart Selman,et al.  Unstructured human activity detection from RGBD images , 2011, 2012 IEEE International Conference on Robotics and Automation.

[38]  Denis Deratani Mauá,et al.  On the Complexity of Strong and Epistemic Credal Networks , 2013, UAI.

[39]  Ling Shao,et al.  Learning Discriminative Representations from RGB-D Video Data , 2013, IJCAI.

[40]  A. Giusti,et al.  Temporal Data Classication by Imprecise Dynamical Models , 2013 .

[41]  Giorgio Metta,et al.  Keep it simple and sparse: real-time action recognition , 2013, J. Mach. Learn. Res..

[42]  Alessandro Antonucci,et al.  Decision Making with Hierarchical Credal Sets , 2014, IPMU.

[43]  Denis Deratani Mauá,et al.  Algorithms for Hidden Markov Models with Imprecisely Specified Parameters , 2014, 2014 Brazilian Conference on Intelligent Systems.

[44]  Giorgio Corani,et al.  Credal ensembles of classifiers , 2014, Comput. Stat. Data Anal..