Field-induced quantum critical point in the itinerant antiferromagnet Ti3Cu4
暂无分享,去创建一个
M. Kanatzidis | C. Malliakas | A. Hallas | G. Luke | A. Aczel | Y. Cai | J. Beare | C. Huang | K. Bayliff | E. Morosan | A. Nevidomskyy | F. Weickert | Shiming Lei | L. Kish | V. Loganathan | J. M. Moya
[1] D. Kaczorowski,et al. Magnetic field-driven quantum criticality in antiferromagnetic CePtIn4 , 2019, Proceedings of the National Academy of Sciences.
[2] Jinguang Cheng,et al. Quantum-critical phase from frustrated magnetism in a strongly correlated metal , 2019, Nature Physics.
[3] K. Schwarz,et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .
[4] T. Lograsso,et al. Suppression of antiferromagnetic spin fluctuations in superconducting Cr0.8Ru0.2 , 2018, Physical Review B.
[5] T. R. Kirkpatrick,et al. Quantum Triple Point and Quantum Critical End Points in Metallic Magnets. , 2017, Physical review letters.
[6] S. Paschen,et al. Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu , 2017 .
[7] W. Pickett,et al. Competing magnetic instabilities in the weak itinerant antiferromagnetic TiAu , 2017 .
[8] W. Pickett,et al. A mechanism for weak itinerant antiferromagnetism: Mirrored van Hove singularities , 2016 .
[9] P. Gegenwart. Grüneisen parameter studies on heavy fermion quantum criticality , 2016, Reports on progress in physics. Physical Society.
[10] Andrea Damascelli,et al. Resonant X-Ray Scattering Studies of Charge Order in Cuprates , 2015, 1509.03313.
[11] Q. Huang,et al. An itinerant antiferromagnetic metal without magnetic constituents , 2015, Nature Communications.
[12] P. Dai. Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.
[13] M. R. Norman,et al. From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.
[14] M. Maple,et al. Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments , 2014, 1410.6850.
[15] MoriyaTôru,et al. Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism. II , 2013 .
[16] P. Canfield,et al. Quantum bicriticality in the heavy-fermion metamagnet YbAgGe. , 2013, Physical review letters.
[17] E. Dagotto,et al. Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.
[18] H. Kotegawa,et al. Ferromagnetic Quantum Critical Endpoint in UCoAl , 2011, 1107.4590.
[19] V. Zapf,et al. Bose Einstein Condensation in Quantum Magnets , 2011 .
[20] T. Rosenbaum,et al. Signatures of quantum criticality in pure Cr at high pressure , 2010, Proceedings of the National Academy of Sciences.
[21] D. Johnston,et al. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.
[22] J. Mercure,et al. Entropy Landscape of Phase Formation Associated with Quantum Criticality in Sr3Ru2O7 , 2009, Science.
[23] P. Littlewood,et al. Breakdown of the Bardeen–Cooper–Schrieffer ground state at a quantum phase transition , 2009, Nature.
[24] C. Geibel,et al. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2. , 2008, Physical review letters.
[25] M. Brando,et al. Unconventional quantum criticality in YbRh2Si2 , 2008 .
[26] Philipp Gegenwart,et al. Quantum criticality in heavy-fermion metals , 2007, 0712.2045.
[27] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[28] M. Vojta,et al. Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.
[29] C. Krellner,et al. High-field phase diagram of the heavy-fermion metal YbRh2Si2 , 2006 .
[30] C. Bergemann,et al. Continuous evolution of the Fermi surface of CeRu2Si2 across the metamagnetic transition. , 2005, Physical review letters.
[31] Y. Mozharivskyj,et al. Magnetic-field-induced quantum critical point in YbPtIn and Yb Pt 0.98 In single crystals , 2005, cond-mat/0506425.
[32] A. Rosch,et al. Sign change of the Gruneisen parameter and magnetocaloric effect near quantum critical points , 2005, cond-mat/0506336.
[33] Z. Fisk,et al. Magnetic field-tuned quantum critical point in CeAusb2 , 2004, cond-mat/0411588.
[34] G. Aeppli,et al. High resolution study of magnetic ordering at absolute zero. , 2004, Physical review letters.
[35] Y. Sun,et al. Violation of the Mott–Ioffe–Regel limit: high-temperature resistivity of itinerant magnets Srn+1RunO3n+1 (n=2,3,∞) and CaRuO3 , 2003, cond-mat/0311142.
[36] O. Nohadani,et al. Universal scaling at field-induced magnetic phase transitions , 2003, cond-mat/0307126.
[37] K. Schubert,et al. Einige Strukturdaten metallischer Phasen , 1968, Naturwissenschaften.
[38] H. Meißner,et al. Einige Strukturdaten metallischer Phasen (11) , 2004, Naturwissenschaften.
[39] P. Coleman,et al. The break-up of heavy electrons at a quantum critical point , 2003, Nature.
[40] Y. Maeno,et al. Angular dependence of the magnetic susceptibility in the itinerant metamagnet Sr3Ru2O7 , 2003, cond-mat/0303142.
[41] Y. Endoh,et al. Competition of antiferromagnetism and superconductivity in Cr-Ru alloys , 2003 .
[42] R. W. Hill,et al. Field-induced quantum critical point in CeCoIn5. , 2002, Physical review letters.
[43] Q. Si,et al. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. , 2002, Physical review letters.
[44] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[45] G. Aeppli,et al. Quantum phase transition in a common metal , 2002, Nature.
[46] A. Schofield,et al. Metamagnetic quantum criticality in metals. , 2001, Physical review letters.
[47] G. Stewart. Non-Fermi-liquid behavior in d- and f-electron metals , 2006 .
[48] A. Schofield,et al. Magnetic Field-Tuned Quantum Criticality in the Metallic Ruthenate Sr3Ru2O7 , 2001, Science.
[49] Xavier Gonze,et al. The ABINIT software project , 2001 .
[50] P. Coleman,et al. How do Fermi liquids get heavy and die? , 2001 .
[51] G. Aeppli,et al. Onset of antiferromagnetism in heavy-fermion metals , 2000, Nature.
[52] A. S Wills,et al. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh) , 2000 .
[53] T. Nikuni,et al. Bose-Einstein condensation of dilute magnons in TlCuCl3. , 1999, Physical review letters.
[54] T. Giamarchi,et al. COUPLED LADDERS IN A MAGNETIC FIELD , 1998, cond-mat/9810219.
[55] G. Stewart,et al. INDUCEMENT OF NON-FERMI-LIQUID BEHAVIOR WITH A MAGNETIC FIELD , 1998 .
[56] G. McMullan,et al. Non-Fermi-liquid behaviour in magnetic d- and f-electron systems , 1998 .
[57] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[58] A. Millis,et al. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.
[59] Juan Rodriguez-Carvaj,et al. Recent advances in magnetic structure determination neutron powder diffraction , 1993 .
[60] Eric Fawcett,et al. Spin-density-wave antiferromagnetism in chromium , 1988 .
[61] T. Moriya,et al. Quantitative Aspects of the Theory of Nearly Ferromagnetic Metals , 1987 .
[62] E. Parthé,et al. STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .
[63] Yamaguchi,et al. Superconductivity and magnetism of bcc Cr-Ru alloys. , 1986, Physical review. B, Condensed matter.
[64] Yamaguchi,et al. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys. , 1985, Physical review. B, Condensed matter.
[65] T. Moriya,et al. Quantitative Aspects of the Theory of Weak Itinerant Antiferromagnetism , 1985 .
[66] T. Moriya. Spin Fluctuations in Ferromagnetic Metals : Temperature Variation of Local Moment and Short Range Order , 1982 .
[67] T. Yamazaki,et al. Zero-and low-field spin relaxation studied by positive muons , 1979 .
[68] K. Ueda. Electrical Resistivity of Antiferromagnetic Metals , 1977 .
[69] John A. Hertz,et al. Quantum critical phenomena , 1976 .
[70] H. Hasegawa,et al. Effect of Spin Fluctuations on Itineraut Electron Antiferromagnetism , 1973 .
[71] M. Fisher,et al. Resistive Anomalies at Magnetic Critical Points , 1968 .
[72] E. Wohlfarth,et al. The effective Curie-Weiss constant of ferromagnetic metals and alloys , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[73] B. Matthias,et al. Superconductivity of Chromium Alloys , 1962 .
[74] M. Fisher. Relation between the specific heat and susceptibility of an antiferromagnet , 1962 .
[75] R. Sherwood,et al. Ferromagnetism in Solid Solutions of Scandium and Indium , 1961 .
[76] B. Matthias,et al. Ferromagnetism of a Zirconium-Zinc Compound , 1958 .