Translate Meanings, Not Just Words: IdiomKB's Role in Optimizing Idiomatic Translation with Language Models

To translate well, machine translation (MT) systems and general-purposed language models (LMs) need a deep understanding of both source and target languages and cultures. Therefore, idioms, with their non-compositional nature, pose particular challenges for Transformer-based systems, as literal translations often miss the intended meaning. Traditional methods, which replace idioms using existing knowledge bases (KBs), often lack scale and context awareness. Addressing these challenges, our approach prioritizes context awareness and scalability, allowing for offline storage of idioms in a manageable KB size. This ensures efficient serving with smaller models and provides a more comprehensive understanding of idiomatic expressions. We introduce a multilingual idiom KB (IdiomKB) developed using large LMs to address this. This KB facilitates better translation by smaller models, such as BLOOMZ (7.1B), Alpaca (7B), and InstructGPT (6.7B), by retrieving idioms' figurative meanings. We present a novel, GPT-4-powered metric for human-aligned evaluation, demonstrating that IdiomKB considerably boosts model performance. Human evaluations further validate our KB's quality.

[1]  Yanghua Xiao,et al.  Distilling Script Knowledge from Large Language Models for Constrained Language Planning , 2023, ACL.

[2]  Shuming Shi,et al.  Exploring the Use of Large Language Models for Reference-Free Text Quality Evaluation: A Preliminary Empirical Study , 2023, ArXiv.

[3]  S. Ananiadou,et al.  ChatGPT as a Factual Inconsistency Evaluator for Text Summarization , 2023, 2303.15621.

[4]  Henrique Pondé de Oliveira Pinto,et al.  GPT-4 Technical Report , 2023, 2303.08774.

[5]  Zhixu Li,et al.  Is ChatGPT a Good NLG Evaluator? A Preliminary Study , 2023, ArXiv.

[6]  Steffen Eger,et al.  ChatGPT: A Meta-Analysis after 2.5 Months , 2023, ArXiv.

[7]  Y. Shoham,et al.  In-Context Retrieval-Augmented Language Models , 2023, Transactions of the Association for Computational Linguistics.

[8]  Ronan Le Bras,et al.  I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation , 2022, ACL.

[9]  Alexander M. Rush,et al.  BLOOM: A 176B-Parameter Open-Access Multilingual Language Model , 2022, ArXiv.

[10]  Hyung Won Chung,et al.  Language Models are Multilingual Chain-of-Thought Reasoners , 2022, ICLR.

[11]  José G. C. de Souza,et al.  CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task , 2022, WMT.

[12]  Shannon L. Spruit,et al.  No Language Left Behind: Scaling Human-Centered Machine Translation , 2022, ArXiv.

[13]  J. Dean,et al.  Emergent Abilities of Large Language Models , 2022, Trans. Mach. Learn. Res..

[14]  Ivan Titov,et al.  Can Transformer be Too Compositional? Analysing Idiom Processing in Neural Machine Translation , 2022, ACL.

[15]  Xin Wu,et al.  Chinese Idiom Paraphrasing , 2022, Transactions of the Association for Computational Linguistics.

[16]  Ryan J. Lowe,et al.  Training language models to follow instructions with human feedback , 2022, NeurIPS.

[17]  Kenan Tang PETCI: A Parallel English Translation Dataset of Chinese Idioms , 2022, ArXiv.

[18]  Dale Schuurmans,et al.  Chain of Thought Prompting Elicits Reasoning in Large Language Models , 2022, NeurIPS.

[19]  Jonathan Berant,et al.  Learning To Retrieve Prompts for In-Context Learning , 2021, NAACL.

[20]  M. Lewis,et al.  MetaICL: Learning to Learn In Context , 2021, NAACL.

[21]  Ronan Le Bras,et al.  Symbolic Knowledge Distillation: from General Language Models to Commonsense Models , 2021, NAACL.

[22]  Elia Bruni,et al.  The Paradox of the Compositionality of Natural Language: A Neural Machine Translation Case Study , 2021, ACL.

[23]  Tosin P. Adewumi,et al.  Potential Idiomatic Expression (PIE)-English: Corpus for Classes of Idioms , 2021, LREC.

[24]  Prateek Saxena,et al.  EPIE Dataset: A Corpus For Possible Idiomatic Expressions , 2020, TDS.

[25]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[26]  Alexandra Birch,et al.  Multiword Expression aware Neural Machine Translation , 2020, LREC.

[27]  Malvina Nissim,et al.  MAGPIE: A Large Corpus of Potentially Idiomatic Expressions , 2020, LREC.

[28]  C. Cucchiarini,et al.  Learning L2 idioms in a CALL environment: the role of practice intensity, modality, and idiom properties , 2020, Computer Assisted Language Learning.

[29]  Marjan Ghazvininejad,et al.  Multilingual Denoising Pre-training for Neural Machine Translation , 2020, Transactions of the Association for Computational Linguistics.

[30]  Christopher Hidey,et al.  Confirming the Non-compositionality of Idioms for Sentiment Analysis , 2019, MWE-WN@ACL.

[31]  Minlie Huang,et al.  ChID: A Large-scale Chinese IDiom Dataset for Cloze Test , 2019, ACL.

[32]  John D. Kelleher,et al.  Exploring the Use of Attention within an Neural Machine Translation Decoder States to Translate Idioms , 2018, ArXiv.

[33]  Heng Ji,et al.  Chengyu Cloze Test , 2018, BEA@NAACL-HLT.

[34]  Dipti Misra Sharma,et al.  No more beating about the bush : A Step towards Idiom Handling for Indian Language NLP , 2018, LREC.

[35]  Marcos Zampieri,et al.  LIdioms: A Multilingual Linked Idioms Data Set , 2018, LREC.

[36]  Christof Monz,et al.  Examining the Tip of the Iceberg: A Data Set for Idiom Translation , 2018, LREC.

[37]  Carlos Ramisch,et al.  Survey: Multiword Expression Processing: A Survey , 2017, CL.

[38]  Rico Sennrich,et al.  Evaluating Machine Translation Performance on Chinese Idioms with a Blacklist Method , 2017, LREC.

[39]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[40]  Marija Brkic Bakaric,et al.  Idioms in state-of-the-art Croatian-English and English-Croatian SMT systems , 2017, 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[41]  Yoshimasa Tsuruoka,et al.  Adaptive Joint Learning of Compositional and Non-Compositional Phrase Embeddings , 2016, ACL.

[42]  Hsin-Chin Chen,et al.  Does formal training in translation/interpreting affect translation strategy? Evidence from idiom translation* , 2016, Bilingualism: Language and Cognition.

[43]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[44]  Hongyu Guo,et al.  Neural Networks for Integrating Compositional and Non-compositional Sentiment in Sentiment Composition , 2015, *SEMEVAL.

[45]  Alexander M. Fraser,et al.  Distinguishing Degrees of Compositionality in Compound Splitting for Statistical Machine Translation , 2014 .

[46]  John D. Kelleher,et al.  An Empirical Study of the Impact of Idioms on Phrase Based Statistical Machine Translation of English to Brazilian-Portuguese , 2014, HyTra@EACL.

[47]  John D. Kelleher,et al.  Evaluation of a Substitution Method for Idiom Transformation in Statistical Machine Translation , 2014, MWE@EACL.

[48]  Joakim Nivre,et al.  Paraphrasing Swedish Compound Nouns in Machine Translation , 2014, MWE@EACL.

[49]  Daisuke Kawahara,et al.  Construction of an Idiom Corpus and its Application to Idiom Identification based on WSD Incorporating Idiom-Specific Features , 2008, EMNLP.

[50]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[51]  Dekang Lin,et al.  Automatic Identification of Non-compositional Phrases , 1999, ACL.

[52]  Anne Cutler,et al.  The access and processing of idiomatic expressions , 1979 .

[53]  Samuel A. Bobrow,et al.  On catching on to idiomatic expressions , 1973, Memory & cognition.

[54]  K. Pearson NOTES ON THE HISTORY OF CORRELATION , 1920 .

[55]  Dragomir R. Radev,et al.  Crosslingual Generalization through Multitask Finetuning , 2023, ACL.

[56]  Philipp Koehn,et al.  Findings of the 2022 Conference on Machine Translation (WMT22) , 2022, WMT.

[57]  R. Navigli,et al.  ID10M: Idiom Identification in 10 Languages , 2022, NAACL-HLT.

[58]  Jatin C. Modh,et al.  Using IndoWordNet for Contextually Improved Machine Translation of Gujarati Idioms , 2021 .

[59]  Jing Jiang,et al.  Learning and Evaluating Chinese Idiom Embeddings , 2021, RANLP.

[60]  S. Bhat,et al.  PIE: A Parallel Idiomatic Expression Corpus for Idiomatic Sentence Generation and Paraphrasing , 2021, MWE.

[61]  Steve Renals,et al.  Word Error Rate Estimation for Speech Recognition: e-WER , 2018, ACL.

[62]  Margarita Strakšienė Analysis of Idiom Translation Strategies from English into Lithuanian , 2009 .

[63]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[64]  Xinqing Wang Applying cognitive linguistics to second language idiom learning , 2022 .