Generation of coherent supercontinuum in a-Si:H waveguides: experiment and modeling based on measured dispersion profile.

Hydrogenated amorphous silicon (a:Si-H) has recently been recognized as a highly nonlinear CMOS compatible photonic platform. We experimentally demonstrate the generation of a supercontinuum (SC) spanning over 500 nm in a-Si:H photonic wire waveguide at telecommunication wavelengths using femtosecond input pulse with energy lower than 5 pJ. Numerical modeling of pulse propagation in the waveguide, based on the experimentally characterized dispersion profile, shows that the supercontinuum is the result of soliton fission and dispersive wave generation. It is demonstrated that the SC is highly coherent and that the waveguides do not suffer from material degradation under femtosecond pulse illumination. Finally, a direct comparison of SC generation in c-Si and a-Si:H waveguides confirms the higher performances of a-Si:H over c-Si for broadband low power SC generation at telecommunication wavelengths.

[1]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[2]  Kazuhiro Ikeda,et al.  Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. , 2007, Optics express.

[3]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  T. Hänsch,et al.  Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. , 2000, Optics letters.

[5]  Supercontinuum generation in hydrogenated amorphous silicon waveguides in the femtosecond regime , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[6]  Beeman,et al.  Dynamics of tetrahedral networks: Amorphous Si and Ge. , 1988, Physical review. B, Condensed matter.

[7]  A. E. Willner,et al.  On-Chip Octave-Spanning Supercontinuum in Nanostructured Silicon Waveguides Using Ultralow Pulse Energy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  P Jeppesen,et al.  Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. , 2011, Optics express.

[9]  Hellmut Fritzsche,et al.  Development in Understanding and Controlling the Staebler-Wronski Effect in a-Si:H , 2001 .

[10]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[11]  J C Knight,et al.  Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique. , 2010, Optics express.

[12]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[13]  Y. Silberberg Solitons and two-photon absorption. , 1990, Optics Letters.

[14]  A Demircan,et al.  Controlling light by light with an optical event horizon. , 2011, Physical review letters.

[15]  A C Peacock,et al.  Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. , 2012, Optics express.

[16]  A. Peacock,et al.  Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers. , 2010, Optics express.

[17]  M. Lipson,et al.  Ultrabroadband supercontinuum generation in a CMOS-compatible platform. , 2012, Optics letters.

[18]  S. Massar,et al.  Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. , 2014, Optics express.

[19]  S. Massar,et al.  On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. , 2011, Optics letters.

[20]  H. Kawashima,et al.  Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. , 2010, Optics express.

[21]  Non-instantaneous optical nonlinearity of an a-Si:H nanowire waveguide. , 2014, Optics express.

[22]  J. Price,et al.  Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. , 2014, Optics letters.

[23]  Continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[24]  Ken Tanizawa,et al.  Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay. , 2012, Optics letters.

[25]  G. Roelkens,et al.  Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550  nm telecommunication wavelength. , 2014, Optics letters.

[26]  Karthik Narayanan,et al.  Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[27]  K. Morigaki,et al.  Modeling of light-induced defect creation in hydrogenated amorphous silicon , 2007 .

[28]  G. Roelkens,et al.  Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region. , 2014, Optics letters.

[29]  David A. Jackson,et al.  Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber , 1989 .

[30]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[31]  Tsai,et al.  Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. , 1985, Physical review. B, Condensed matter.

[32]  C Monat,et al.  Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. , 2012, Optics express.

[33]  I. A. Walmsley,et al.  Self-referencing spectral interferometry for measuring ultrashort optical pulses , 1999 .

[34]  Amol Choudhary,et al.  Efficient frequency shifting of dispersive waves at solitons. , 2012, Optics express.

[35]  Yurii A. Vlasov,et al.  Supercontinuum generation in silicon photonic wires , 2007 .

[36]  G. Roelkens,et al.  Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range. , 2014, Optics letters.

[37]  W. Knox,et al.  Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[38]  David J. Moss,et al.  High Kerr nonlinearity hydrogenated amorphous silicon nanowires with low two photon absorption and high optical stability , 2014, 1405.2904.

[39]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[40]  Fengnian Xia,et al.  Supercontinuum generation in silicon photonic wires , 2007, 2008 IEEE/LEOS Winter Topical Meeting Series.

[41]  Karthik Narayanan,et al.  Optical nonlinearities in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[42]  Hon Ki Tsang,et al.  Nonlinear optical properties of silicon waveguides , 2008 .

[43]  A. C. Peacock,et al.  Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators , 2013, Scientific Reports.