A one-dimensional optomechanical crystal with a complete phononic band gap

Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical and mechanical waves at the nanoscale. Among their physical implementations, optomechanical (OM) crystals built on semiconductor slabs enable the integration and manipulation of multiple OM elements in a single chip and provide gigahertz phonons suitable for coherent phonon manipulation. Different demonstrations of coupling of infrared photons and gigahertz phonons in cavities created by inserting defects on OM crystals have been performed. However, the considered structures do not show a complete phononic bandgap, which should enable longer lifetimes, as acoustic leakage is minimized. Here we demonstrate the excitation of acoustic modes in a one-dimensional OM crystal properly designed to display a full phononic bandgap for acoustic modes at 4 GHz. The modes inside the complete bandgap are designed to have high-mechanical Q-factors, limit clamping losses and be invariant to fabrication imperfections.

[1]  A. Cleland Optomechanics: Photons refrigerating phonons , 2009 .

[2]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[3]  Y. Pennec,et al.  Band gaps and cavity modes in dual phononic and photonic strip waveguides , 2011, AIP Advances.

[4]  Andrey B. Matsko,et al.  Cavity Opto-Mechanics , 2009 .

[5]  M. Asheghi,et al.  Phonon Conduction in Periodically Porous Silicon Nanobridges , 2012 .

[6]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[7]  Steven G. Johnson,et al.  Optomechanical and photothermal interactions in suspended photonic crystal membranes. , 2012, Optics express.

[8]  S. Deleglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2012, CLEO 2012.

[9]  Chih-Kuang Yu,et al.  A theoretical study of the specific heat and Debye temperature of low-dimensional materials , 2008 .

[10]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[11]  A silicon electromechanical photodetector. , 2013, Nano letters.

[12]  Oskar Painter,et al.  Two-dimensional phononic-photonic band gap optomechanical crystal cavity. , 2014, Physical review letters.

[13]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[14]  A. Lemaître,et al.  Wavelength-sized GaAs optomechanical resonators with gigahertz frequency , 2011, 1101.4499.

[15]  Chun-Hua Dong,et al.  Optomechanical dark mode , 2013 .

[16]  Michael R. Vanner,et al.  Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity , 2009, 0901.1801.

[17]  Stroscio,et al.  Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. , 1995, Physical review. B, Condensed matter.

[18]  M. Tobar,et al.  Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature , 2012, 1202.4556.

[19]  T. Alegre Electromagnetically Induced Transparency and Slow Light with Optomechanics , 2012 .

[20]  Oskar Painter,et al.  Optimized optomechanical crystal cavity with acoustic radiation shield , 2012, 1206.2099.

[21]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[22]  Lu Ding,et al.  Ultralow loss single-mode silica tapers manufactured by a microheater , 2010 .

[23]  M. Hettich,et al.  Lifetimes of confined acoustic phonons in ultrathin silicon membranes. , 2012, Physical review letters.

[24]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[25]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[26]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.

[27]  O. Arcizet,et al.  Optomechanical coupling in a two-dimensional photonic crystal defect cavity , 2011, CLEO 2011.

[28]  S. Deleglise,et al.  Determination of the vacuum optomechanical coupling rate using frequency noise calibration. , 2010, Optics Express.

[29]  S. Deleglise,et al.  Optomechanically Induced Transparency , 2011 .

[30]  Oskar Painter,et al.  Coherent optical wavelength conversion via cavity optomechanics , 2012, Nature Communications.

[31]  A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity , 2012, CLEO: 2013.

[32]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[33]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[34]  Martin Maldovan,et al.  Sound and heat revolutions in phononics , 2013, Nature.

[35]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[36]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[37]  Lin Tian,et al.  Adiabatic state conversion and pulse transmission in optomechanical systems. , 2011, Physical review letters.

[38]  Phonons in slow motion: dispersion relations in ultrathin Si membranes. , 2012, Nano letters.

[39]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[40]  Calculation of the specific heat in ultra-thin free-standing silicon membranes , 2012, 1211.2530.

[41]  K. Vahala,et al.  Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[42]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[43]  T. Kippenberg,et al.  Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit , 2009 .

[44]  Mo Li,et al.  Multichannel cavity optomechanics for all-optical amplification of radio frequency signals , 2012, Nature Communications.

[45]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[46]  Edwin L. Thomas,et al.  Simultaneous localization of photons and phonons in two-dimensional periodic structures , 2006 .