Zero-sum problems for abelian p-groups and covers of the integers by residue classes

Zero-sum problems for abelian groups and covers of the integers by residue classes, are two different active topics initiated by P. Erdős more than 40 years ago and investigated by many researchers separately since then. In an earlier announcement [S03b], the author claimed some surprising connections among these seemingly unrelated fascinating areas. In this paper we establish further connections between zero-sum problems for abelian p-groups and covers of the integers. For example, we extend the famous Erdős-Ginzburg-Ziv theorem in the following way: If { as(mod ns)}s=1k covers each integer either exactly 2q − 1 times or exactly 2q times where q is a prime power, then for any c1,...,ck ∈ ℤ/qℤ there exists an I ⊆ {1,...,k} such that ∑s∈I 1/ns = q and ∑s∈Ics = 0. The main theorem of this paper unifies many results in the two realms and also implies an extension of the Alon-Friedland-Kalai result on regular subgraphs.

[1]  Oriol Serra,et al.  Transversals of additive Latin squares , 2001 .

[2]  FINITE COVERS OF GROUPS BY COSETS OR SUBGROUPS , 2005, math/0501451.

[3]  Zhi-Wei Sun,et al.  Sums of subsets with polynomial restrictions , 2002 .

[4]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .

[5]  Zhi-Wei Sun,et al.  An extension of Lucas’ theorem , 2001 .

[6]  Zhi-Wei Sun On the range of a covering function , 2004 .

[7]  Zhi-Wei Sun Covering the integers by arithmetic sequences. II , 1996 .

[8]  Christian Elsholtz Lower Bounds For Multidimensional Zero Sums , 2004, Comb..

[9]  R. Maltby A Combinatorial Identity of Subset-Sum Powers in Rings , 2000 .

[10]  On covering multiplicity , 1999 .

[11]  Noga Alon,et al.  Regular subgraphs of almost regular graphs , 1984, J. Comb. Theory, Ser. B.

[12]  Noga Alon,et al.  Adding Distinct Congruence Classes Modulo a Prime , 1995 .

[13]  Weidong Gao,et al.  Zero-sum problems and coverings by proper cosets , 2003, Eur. J. Comb..

[14]  Zhi-Wei Sun ON INTEGERS NOT OF THE FORM ±p ± q , 2000 .

[15]  Zhi-Wei Sun A connection between covers of Z and unit fractions , 2004 .

[16]  Paul Erdös,et al.  On the addition of residue classes mod p , 1964 .

[17]  J. A. Dias da Silva,et al.  Cyclic Spaces for Grassmann Derivatives and Additive Theory , 1994 .

[18]  Noga Alon,et al.  A nowhere-zero point in linear mappings , 1989, Comb..

[20]  Zhi-Wei Sun,et al.  On integers not of the form , 1999 .

[21]  Noga Alon,et al.  Every 4-regular graph plus an edge contains a 3-regular subgraph , 1984, Journal of combinatorial theory. Series B (Print).

[22]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[23]  Algebraic Approaches to Periodic Arithmetical Maps , 2001 .

[24]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[25]  Glenn H. Hurlbert,et al.  An application of graph pebbling to zero-sum sequences in abelian groups , 2004 .

[26]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[27]  C. V. Eynden,et al.  Any arithmetic progressions covering the first 2ⁿ integers cover all integers , 1970 .

[28]  Svetoslav Savchev,et al.  Kemnitz' conjecture revisited , 2005, Discret. Math..

[29]  Zhi-Wei Sun,et al.  On the Function w(x)=|{1≤s≤k : x≡as (mod ns)}| , 2003, Comb..

[30]  R. Crocker On the sum of a prime and of two powers of two. , 1971 .

[31]  Weidong Gao Note on a Zero-Sum Problem , 2001, J. Comb. Theory, Ser. A.

[32]  C. Pomerance,et al.  Sieving by large integers and covering systems of congruences , 2005, math/0507374.

[33]  R. Odoni A CLASSICAL INTRODUCTION TO MODERN NUMBER THEORY (Graduate Texts in Mathematics, 84) , 1984 .

[34]  Weidong Gao,et al.  On Long Minimal Zero Sequences in Finite Abelian Groups , 1999 .

[35]  On exactlym times covers , 1992 .

[36]  S. Lang Number Theory III , 1991 .

[37]  John W. Nicol,et al.  A Fibonacci-like Sequence of Composite Numbers , 1999, Electron. J. Comb..

[38]  ON INTEGERS OF THE FORM 2 k + p AND SOME RELATED PROBLEMS , 2022 .

[39]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[40]  Lajos Rónyai On a Conjecture of Kemnitz , 2000, Comb..

[41]  Zhi-Wei Sun On Snevily's conjecture and restricted sumsets , 2003, J. Comb. Theory, Ser. A.

[42]  Wolfgang M. Schmidt,et al.  Diophantine problems in variables restricted to the values 0 and 1 , 1980 .

[43]  Noga Alon,et al.  Zero-sum sets of prescribed size , 1993 .

[44]  R. Graham A Fibonacci-like Sequence of Composite Numbers , 1964 .

[45]  Zhi-Wei Sun Unification of zero-sum problems, subset sums and covers of ℤ , 2003 .

[46]  S. Zhi-Wei On integers not of the form +/-p^a +/-q^b , 2000 .

[47]  Noga Alon,et al.  The Polynomial Method and Restricted Sums of Congruence Classes , 1996 .

[48]  Zhi-Wei Sun Exact m-covers and the linear form $∑^k_{s=1} x_s/n_s$ , 1997 .

[49]  R. Guy Unsolved Problems in Number Theory , 1981 .

[50]  Noga Alon Discrete Mathematics: Methods and Challenges , 2002 .

[51]  Alfred Geroldinger On a Conjecture of Kleitman and Lemke , 1993 .