Vyacheslav Tanaev: contributions to scheduling and related areas

This paper discusses several areas of research conducted by Vyacheslav Tanaev (1940–2002), mainly on scheduling. His contribution to the parametric decomposition of optimization problems is also addressed. For each area we focus on the most important results obtained by V.S. Tanaev and trace how his research has been advanced.

[1]  Vitaly A. Strusevich,et al.  The open shop scheduling problem with a given sequence of jobs on one machine , 1998 .

[2]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[3]  Alexandre Dolgui,et al.  Decomposition approach for a problem of lot-sizing and sequencing under uncertainties , 2005, Int. J. Comput. Integr. Manuf..

[4]  Jan Karel Lenstra,et al.  Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Constraints , 1983, Oper. Res..

[5]  Alexandre Dolgui,et al.  Unit-time Job-shop Scheduling via Mixed Graph Coloring , 2001 .

[6]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[7]  Alexandre Dolgui,et al.  Optimization of power transmission systems using a multi-level decomposition approach , 2007, RAIRO Oper. Res..

[8]  Vitaly A. Strusevich,et al.  Earliness penalties on a single machine subject to precedence constraints: SLK due date assignment , 1997, Comput. Oper. Res..

[9]  Toji Makino ON A SCHEDULING PROBLEM , 1965 .

[10]  N. V. Shakhlevich,et al.  Adaptive scheduling algorithm based on mixed graph model , 1996 .

[11]  Alexandre Dolgui,et al.  A Decomposition Method for Transfer Line Life Cycle Cost Optimisation , 2006, J. Math. Model. Algorithms.

[12]  V. S. Tanaev,et al.  Scheduling Theory: Multi-Stage Systems , 1994 .

[13]  Dmitry Podkopaev,et al.  Stability and Regularization of Vector Problems of Integer Linear Programming , 2002 .

[14]  Eugene Levner,et al.  Multiprocessor Scheduling, Theory and Applications , 2007 .

[15]  V. S. Tanaev,et al.  Scheduling theory and practice: Minsk group results , 1994 .

[16]  Chris J. Mitchell Applications of combinatorial mathematics , 1997 .

[17]  Natalia V. Shakhlevich Open shop unit-time scheduling problems with symmetric objective functions , 2005, 4OR.

[18]  Mikhail Y. Kovalyov,et al.  Uniform Machine Scheduling of Unit-time Jobs Subject to Resource Constraints , 1998, Discret. Appl. Math..

[19]  Fawaz S. Al-Anzi,et al.  Using mixed graph coloring to minimize total completion time in job shop scheduling , 2006, Appl. Math. Comput..

[20]  Yu. M. Ermol'ev,et al.  The method of parametric decomposition , 1973 .

[21]  Jacek Blazewicz,et al.  Handbook on Scheduling , 2007 .

[22]  Eugene Levner,et al.  Cyclic Scheduling in Robotic Cells: An Extension of Basic Models in Machine Scheduling Theory , 2007 .

[23]  Chris N. Potts,et al.  Single machine scheduling models with deterioration and learning: handling precedence constraints via priority generation , 2008, J. Sched..

[24]  V. S. Tanaev,et al.  Parametric decomposition of extremal problems , 1977 .

[25]  Gang Yu,et al.  Industrial applications of combinatorial optimization , 1998 .

[26]  Valery Gordon,et al.  Scheduling Decisions for the Systems with Deadlines , 2000 .

[27]  Jacek Blazewicz,et al.  Scheduling Dependent Tasks with Different Arrival Times to Meet Deadlines , 1976, Performance.

[28]  V. Tanaev,et al.  Scheduling theory single-stage systems , 1994 .

[29]  Frits C. R. Spieksma,et al.  Interval scheduling: A survey , 2007 .

[30]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[31]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[32]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[33]  Alexandre Dolgui,et al.  Decision making and support tools for design of machining systems , 2010 .

[34]  Yuri N. Sotskov,et al.  Some Concepts of Stability Analysis in Combinatorial optimization , 1995, Discret. Appl. Math..

[35]  Vitaly A. Strusevich,et al.  Flow Shop Scheduling Problems Under Machine–Dependent Precedence Constraints , 2004, J. Comb. Optim..

[36]  Alexandre Dolgui,et al.  Balancing large-scale machining lines with multi-spindle heads using decomposition , 2006 .

[37]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[38]  Dominique de Werra,et al.  On two coloring problems in mixed graphs , 2008, Eur. J. Comb..

[39]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[40]  Adam Janiak,et al.  Sequencing with Ordered Criteria, Precedence and Group Technology Constraints , 2001, Informatica.

[41]  V. Tanaev,et al.  Stability Radius of an Optimal Schedule: A Survey and Recent Developments , 1998 .

[42]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[43]  Alexandre Dolgui,et al.  Decision-Making and Support Tools for Design of Transmission Systems , 2008 .

[44]  Chris N. Potts,et al.  Fifty years of scheduling: a survey of milestones , 2009, J. Oper. Res. Soc..

[45]  Vitaly A. Strusevich Multi-stage scheduling problems with precedence constraints , 1997 .

[46]  J. Kornai,et al.  Two-Level Planning , 1965 .

[47]  Ronald L. Graham,et al.  Optimal scheduling for two-processor systems , 1972, Acta Informatica.

[48]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[49]  Bernard Ries Coloring some classes of mixed graphs , 2007, Discret. Appl. Math..

[50]  Michael H. Rothkopf,et al.  Scheduling Independent Tasks on Parallel Processors , 1966 .

[51]  Alexandre Dolgui,et al.  A heuristic multi-start decomposition approach for optimal design of serial machining lines , 2008, Eur. J. Oper. Res..

[52]  Frank Werner,et al.  Stability of an optimal schedule in a job shop , 1997 .

[53]  Santosh S. Vempala,et al.  On The Approximability Of The Traveling Salesman Problem , 2006, Comb..

[54]  W. A. Horn Some simple scheduling algorithms , 1974 .

[55]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[56]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[57]  Vitaly A. Strusevich Shop scheduling problems under precedence constraints , 1997, Ann. Oper. Res..

[58]  Pierre Hansen,et al.  Mixed graph colorings , 1995, Math. Methods Oper. Res..

[59]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[60]  O. Ore Theory of Graphs , 1962 .

[61]  G. Dantzig,et al.  FINDING A CYCLE IN A GRAPH WITH MINIMUM COST TO TIME RATIO WITH APPLICATION TO A SHIP ROUTING PROBLEM , 1966 .

[62]  Yu. N. Sotskov,et al.  Mixed multigraph approach to scheduling jobs on machines of different types , 1997 .

[63]  Karin Krüger,et al.  Heuristics for generalized shop scheduling problems based on decomposition , 1998 .

[64]  H. Neil Geismar,et al.  Sequencing and Scheduling in Robotic Cells: Recent Developments , 2005, J. Sched..

[65]  Clyde L. Monma,et al.  Sequencing with Series-Parallel Precedence Constraints , 1979, Math. Oper. Res..

[66]  Nicos Christofides,et al.  The period routing problem , 1984, Networks.

[67]  I. V. Romanovskil Optimization of stationary control of a discrete deterministic process , 1967 .

[68]  Y. N. Stoskov Stability of an optimal schedule , 1991 .

[69]  N. N. Gushchinskiy,et al.  Parametric decomposition of problems of minimizing composite functions on parametrized paths of directed graphs , 1991 .

[70]  Adam Janiak,et al.  Scheduling in a contaminated area: A model and polynomial algorithms , 2006, Eur. J. Oper. Res..

[71]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[72]  Valery Gordon,et al.  Single machine scheduling and due date assignment under series-parallel precedence constraints , 2005 .

[73]  Albert P. M. Wagelmans,et al.  On the calculation of the stability radiusof an optimal or an approximate schedule , 1998, Ann. Oper. Res..

[74]  Gilbert Laporte,et al.  Routing problems: A bibliography , 1995, Ann. Oper. Res..

[75]  T. C. Edwin Cheng,et al.  Complexity Results for Flow-Shop and Open-Shop Scheduling Problems with Transportation Delays , 2004, Ann. Oper. Res..

[76]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[77]  Frédéric Adam,et al.  Encyclopedia of Decision Making and Decision Support Technologies , 2008 .

[78]  M Ya Kovalev,et al.  Approximation scheduling algorithms: a survey , 1989 .

[79]  N. V. Shakhlevich,et al.  NP-hardness of shop-scheduling problems with three jobs , 1995 .

[80]  Y. Sotskov,et al.  Scheduling Problems and Mixed Graph Colorings , 2002 .

[81]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[82]  W. A. Horn Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear Delay Penalties , 1972 .

[83]  T. C. Edwin Cheng,et al.  Fixed interval scheduling: Models, applications, computational complexity and algorithms , 2007, Eur. J. Oper. Res..

[84]  Yong Se Kim,et al.  COMPUTERS IN ENGINEERING , 1994 .