The boolean hierarchy of NP-partitions

We introduce the boolean hierarchy of k-partitions over NP for k>=3 as a generalization of the boolean hierarchy of sets (i.e., 2-partitions) over NP. Whereas the structure of the latter hierarchy is rather simple the structure of the boolean hierarchy of k-partitions over NP for k>=3 turns out to be much more complicated. We formulate the Embedding Conjecture which enables us to get a complete idea of this structure. This conjecture is supported by several partial results.

[1]  Ker-I Ko On Self-Reducibility and Weak P-Selectivity , 1983, J. Comput. Syst. Sci..

[2]  Klaus W. Wagner,et al.  On boolean lowness and boolean highness , 2001, Theor. Comput. Sci..

[3]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[4]  Richard Beigel Gaps in bounded query hierarchies , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[5]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[6]  V. Selivanov Boolean Hierarchies of Partitions over a Reducible Base , 2004 .

[7]  G. Grätzer General Lattice Theory , 1978 .

[8]  Klaus W. Wagner,et al.  The Boolean Hierarchy of NP-Partitions , 2000, STACS.

[9]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[10]  Lane A. Hemaspaandra,et al.  Computing Solutions Uniquely Collapses the Polynomial Hierarchy , 1996, SIAM J. Comput..

[11]  Sven Kosub NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.

[12]  Ulrich Hertrampf Locally Definable Acceptance Types - The Three-Valued Case , 1992, LATIN.

[13]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[14]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[15]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[16]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[17]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.

[18]  Jie Wang,et al.  Nondeterministically Selective Sets , 1995, Int. J. Found. Comput. Sci..

[19]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[20]  Edith Hemaspaandra,et al.  What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.

[21]  Y. Ershov A hierarchy of sets. I , 1968 .