Computation of integrals with oscillatory singular factors of algebraic and logarithmic type

In this paper, we present the Clenshaw-Curtis-Filon methods and the higher order methods for computing many classes of oscillatory integrals with algebraic or logarithmic singularities at the two endpoints of the interval of integration. The methods first require an interpolant of the nonoscillatory and nonsingular parts of the integrands in N + 1 Clenshaw-Curtis points. Then, the required modified moments, can be accurately and efficiently computed by constructing some recurrence relations. Moreover, for these quadrature rules, their absolute errors in inverse powers of the frequency ω , are given. The presented methods share the advantageous property that the accuracy improves greatly, for fixed N , as ω increases. Numerical examples show the accuracy and efficiency of the proposed methods.

[1]  Congpei An,et al.  Error Bounds for Numerical Integration of Oscillatory Bessel Transforms with Algebraic or Logarithmic Singularities , 2014, 1401.2744.

[2]  Ivan G. Graham,et al.  Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals , 2011 .

[3]  Shuhuang Xiang,et al.  Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .

[4]  S. Xiang,et al.  Computation of highly oscillatory Bessel transforms with algebraic singularities , 2016, 1605.08568.

[5]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[6]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[7]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[8]  Shuhuang Xiang,et al.  Numerical evaluation of a class of highly oscillatory integrals involving Airy functions , 2014, Appl. Math. Comput..

[9]  G. Arfken Mathematical Methods for Physicists , 1967 .

[10]  S. Xiang Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .

[11]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[12]  Daniel W Lozier,et al.  Numerical solution of linear difference equations , 1980 .

[13]  Congpei An,et al.  Differentiation formulas of some hypergeometric functions with respect to all parameters , 2015, Appl. Math. Comput..

[14]  Shuhuang Xiang,et al.  Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.

[15]  T. Kim,et al.  Filon-Clenshaw-Curtis Rules for Highly Oscillatory Integrals with Algebraic Singularities and Stationary Points , 2012, SIAM J. Numer. Anal..

[16]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[17]  A class of oscillatory singular integrals on triebel-lizorkin spaces , 2006 .

[18]  M. Hamed,et al.  A Numerical Integration Formula for the Solution of the Singular Integral Equation for Classical Crack Problems in Plane and Antiplane Elasticity , 1991 .

[19]  E. Stein,et al.  Singular integrals related to the Radon transform and boundary value problems. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Stanisław Lewanowicz,et al.  Evaluation of bessel function integrals with algebraic singularities , 1991 .

[21]  Víctor Domínguez,et al.  Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities , 2013, J. Comput. Appl. Math..

[22]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[23]  Robert Piessens,et al.  On the computation of Fourier transforms of singular functions , 1992 .

[24]  Hongchao Kang,et al.  Fast Computation of Singular Oscillatory Fourier Transforms , 2014 .

[25]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[26]  Shuhuang Xiang,et al.  On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals , 2015, Adv. Comput. Math..

[27]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[28]  Shuhuang Xiang,et al.  Efficient quadrature of highly oscillatory integrals with algebraic singularities , 2013, J. Comput. Appl. Math..

[29]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[30]  Shuhuang Xiang,et al.  Computation of integrals with oscillatory and singular integrands using Chebyshev expansions , 2013, J. Comput. Appl. Math..

[31]  A. Erdélyi,et al.  Asymptotic Representations of Fourier Integrals and the Method of Stationary Phase , 1955 .

[32]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[33]  Shuhuang Xiang,et al.  Efficient integration for a class of highly oscillatory integrals , 2011, Appl. Math. Comput..

[34]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  J. Oliver,et al.  The numerical solution of linear recurrence relations , 1968 .

[36]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[37]  Congpei An,et al.  On evaluation of Bessel transforms with oscillatory and algebraic singular integrands , 2014, J. Comput. Appl. Math..

[38]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .