Computation of integrals with oscillatory singular factors of algebraic and logarithmic type
暂无分享,去创建一个
[1] Congpei An,et al. Error Bounds for Numerical Integration of Oscillatory Bessel Transforms with Algebraic or Logarithmic Singularities , 2014, 1401.2744.
[2] Ivan G. Graham,et al. Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals , 2011 .
[3] Shuhuang Xiang,et al. Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .
[4] S. Xiang,et al. Computation of highly oscillatory Bessel transforms with algebraic singularities , 2016, 1605.08568.
[5] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[6] Germund Dahlquist,et al. Numerical Methods in Scientific Computing: Volume 1 , 2008 .
[7] Dugald B. Duncan,et al. Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..
[8] Shuhuang Xiang,et al. Numerical evaluation of a class of highly oscillatory integrals involving Airy functions , 2014, Appl. Math. Comput..
[9] G. Arfken. Mathematical Methods for Physicists , 1967 .
[10] S. Xiang. Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .
[11] Weiwei Sun,et al. A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..
[12] Daniel W Lozier,et al. Numerical solution of linear difference equations , 1980 .
[13] Congpei An,et al. Differentiation formulas of some hypergeometric functions with respect to all parameters , 2015, Appl. Math. Comput..
[14] Shuhuang Xiang,et al. Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.
[15] T. Kim,et al. Filon-Clenshaw-Curtis Rules for Highly Oscillatory Integrals with Algebraic Singularities and Stationary Points , 2012, SIAM J. Numer. Anal..
[16] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[17] A class of oscillatory singular integrals on triebel-lizorkin spaces , 2006 .
[18] M. Hamed,et al. A Numerical Integration Formula for the Solution of the Singular Integral Equation for Classical Crack Problems in Plane and Antiplane Elasticity , 1991 .
[19] E. Stein,et al. Singular integrals related to the Radon transform and boundary value problems. , 1983, Proceedings of the National Academy of Sciences of the United States of America.
[20] Stanisław Lewanowicz,et al. Evaluation of bessel function integrals with algebraic singularities , 1991 .
[21] Víctor Domínguez,et al. Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities , 2013, J. Comput. Appl. Math..
[22] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[23] Robert Piessens,et al. On the computation of Fourier transforms of singular functions , 1992 .
[24] Hongchao Kang,et al. Fast Computation of Singular Oscillatory Fourier Transforms , 2014 .
[25] Ivan G. Graham,et al. A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.
[26] Shuhuang Xiang,et al. On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals , 2015, Adv. Comput. Math..
[27] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[28] Shuhuang Xiang,et al. Efficient quadrature of highly oscillatory integrals with algebraic singularities , 2013, J. Comput. Appl. Math..
[29] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[30] Shuhuang Xiang,et al. Computation of integrals with oscillatory and singular integrands using Chebyshev expansions , 2013, J. Comput. Appl. Math..
[31] A. Erdélyi,et al. Asymptotic Representations of Fourier Integrals and the Method of Stationary Phase , 1955 .
[32] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[33] Shuhuang Xiang,et al. Efficient integration for a class of highly oscillatory integrals , 2011, Appl. Math. Comput..
[34] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[35] J. Oliver,et al. The numerical solution of linear recurrence relations , 1968 .
[36] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[37] Congpei An,et al. On evaluation of Bessel transforms with oscillatory and algebraic singular integrands , 2014, J. Comput. Appl. Math..
[38] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .