Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique

Since the system behaviors of a dual-axis inverted-pendulum mechanism including actuator dynamics are highly nonlinear, it is difficult to design a suitable control system that realizes real-time stabilization and accurate tracking control at all times. In this paper, an adaptive sliding-mode control system is implemented to control a dual-axis inverted-pendulum mechanism that is driven by permanent magnet synchronous motors. First, the energy conservation principle is adopted to build a mathematical model of the motor-mechanism-coupled system. Moreover, an adaptive sliding-mode control system is developed for stabilizing and tracking control of the dual-axis inverted-pendulum system, where an adaptive algorithm is investigated to relax the requirement of the bound of lumped uncertainty in the traditional sliding-mode control. In addition, numerical simulation and experimental results show that the proposed control scheme provides high-performance dynamic characteristics and is robust with regard to parametric variations, various reference trajectories, and different initial states.

[1]  Shiuh-Jer Huang,et al.  Control of an inverted pendulum using grey prediction model , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[2]  Phillip Barkan,et al.  Kinematics and Dynamics of Planar Machinery , 1979 .

[3]  G. Medrano-Cerda,et al.  Balancing and Attitude Control of Double and Triple Inverted Pendulums , 1995 .

[4]  Mario E. Magaña,et al.  Fuzzy-logic control of an inverted pendulum with vision feedback , 1998 .

[5]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[6]  Wen-Liang Chen,et al.  Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system , 1998, IEEE Trans. Ind. Electron..

[7]  Krishnan,et al.  Electric Motor Drives , 2007 .

[8]  Jie Huang Asymptotic tracking of a nonminimum phase nonlinear system with nonhyperbolic zero dynamics , 2000, IEEE Trans. Autom. Control..

[9]  Robert L. Norton Kinematics and Dynamics of Machinery , 2008 .

[10]  Li-Xin Wang,et al.  Stable adaptive fuzzy controllers with application to inverted pendulum tracking , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[11]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[12]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[13]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[14]  Myung-Joong Youn,et al.  Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique , 2000, IEEE Trans. Control. Syst. Technol..

[15]  Gustavo A. Medrano-Cerda,et al.  Discrete-time H∞ control of a triple inverted pendulum with single control input , 1999 .

[16]  P. Apkarian,et al.  LPV techniques for control of an inverted pendulum , 1999, IEEE Control Systems.

[17]  T. Ishida,et al.  Learning control of an inverted pendulum using a neural network , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[18]  Rong-Jong Wai,et al.  Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network , 2001, IEEE Trans. Ind. Electron..

[19]  R. Krishnan,et al.  Electric Motor Drives: Modeling, Analysis, and Control , 2001 .

[20]  G. A. Medrano-Cersa Robust computer control of an inverted pendulum , 1999 .

[21]  C. Y. Kuo,et al.  Real time stabilisation of a triple link inverted pendulum using single control input , 1997 .

[22]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[23]  Kuo-Kai Shyu,et al.  Incremental motion control of synchronous reluctance motor via multisegment sliding mode control method , 2002, IEEE Trans. Control. Syst. Technol..

[24]  S. Mourad,et al.  Balancing of an inverted pendulum with a SCARA robot , 1998 .