Numerical methods for accurate description of ultrashort pulses in optical fibers

Abstract We consider a one-dimensional first-order nonlinear wave equation, the so-called forward Maxwell equation (FME), which applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity and spatial homogeneity in the propagation direction. We compare FME to the commonly accepted generalized nonlinear Schrodinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.

[1]  Truong X. Tran,et al.  Interaction between optical fields and their conjugates in nonlinear media. , 2013, Optics express.

[2]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[3]  Weizhu Bao,et al.  Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation , 2013, J. Comput. Phys..

[4]  Contribution of third-harmonic and negative-frequency polarization fields to self-phase modulation in nonlinear media. , 2014, Optics letters.

[5]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[6]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  R. LeVeque Numerical methods for conservation laws , 1990 .

[8]  Few-optical-cycle solitons and pulse self-compression in a Kerr medium. , 2007, Physical review letters.

[9]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[10]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[11]  J V Moloney,et al.  Unidirectional optical pulse propagation equation. , 2002, Physical review letters.

[12]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[13]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[14]  Ajoy Ghatak,et al.  The fiber optic essentials , 2007 .

[15]  C. E. Wayne,et al.  Propagation of ultra-short optical pulses in cubic nonlinear media , 2004 .

[16]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[17]  Sergei Sakovich,et al.  The Short Pulse Equation Is Integrable , 2005 .

[18]  Mindaugas Radziunas,et al.  Effective Numerical Algorithm for Simulations of Beam Stabilization in Broad Area Semiconductor Lasers and Amplifiers , 2014 .

[19]  K. Oughstun,et al.  FAILURE OF THE QUASIMONOCHROMATIC APPROXIMATION FOR ULTRASHORT PULSE PROPAGATION IN A DISPERSIVE, ATTENUATIVE MEDIUM , 1997 .

[20]  Uwe Bandelow,et al.  Few-cycle optical solitary waves in nonlinear dispersive media , 2013 .

[21]  A. Husakou,et al.  Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. , 2001, Physical review letters.

[22]  S. Amiranashvili,et al.  Dispersion of nonlinear group velocity determines shortest envelope solitons , 2011 .

[23]  J V Moloney,et al.  Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Andrei I. Maimistov INVITED PAPER: Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium , 2000 .

[25]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[26]  L. Berg'e,et al.  The fundamental solution of the unidirectional pulse propagation equation , 2013, 1403.4444.

[27]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[28]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[29]  P. Russell,et al.  Four-wave mixing instabilities in photonic-crystal and tapered fibers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Takenobu Suzuki,et al.  Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber , 2012 .

[31]  D. E. Vakman,et al.  METHODOLOGICAL NOTES: Amplitude, phase, frequency---fundamental concepts of oscillation theory , 1977 .

[32]  Ayhan Demircan,et al.  Ultrashort Optical Pulse Propagation in terms of Analytic Signal , 2011 .

[33]  Mindaugas Radziunas,et al.  Numerical methods for a class of generalized nonlinear Schrödinger equations , 2015 .

[34]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[35]  Steven G. Johnson,et al.  A Modified Split-Radix FFT With Fewer Arithmetic Operations , 2007, IEEE Transactions on Signal Processing.

[36]  Uwe Bandelow,et al.  On the propagation of vector ultra-short pulses , 2008 .

[37]  S. Sazonov,et al.  Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media , 1997 .

[38]  Ajoy Ghatak,et al.  Fiber Optic Essentials: Thyagarajan/Fiber Optic , 2007 .

[39]  M. Thalhammer,et al.  On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .

[40]  Paul Kinsler Optical pulse propagation with minimal approximations , 2010 .

[41]  Michael Bass,et al.  Handbook of optics , 1995 .

[42]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[43]  N. Rosanov,et al.  Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium , 2011 .

[44]  S. Amiranashvili,et al.  A model equation for ultrashort optical pulses around the zero dispersion frequency , 2010 .