Thermoelastic Damping in the Electrodes Determines $Q$ of AlN Contour Mode Resonators

This paper experimentally verifies the impact of thermoelastic damping (TED) in metal electrodes on the quality factor (<inline-formula> <tex-math notation="LaTeX">$Q_{\text {ted}})$ </tex-math></inline-formula> of 1 GHz Aluminum Nitride (AlN) contour mode resonators (CMRs). A semianalytical approach that treats the electrodes as standard anelastic solids and models their displacement through a 1-D wave equation is followed to predict the dependence of <inline-formula> <tex-math notation="LaTeX">$Q_{\text {ted}}$ </tex-math></inline-formula> on geometrical, thermal, and mechanical parameters. To verify <inline-formula> <tex-math notation="LaTeX">$Q_{\text {ted}}$ </tex-math></inline-formula> experimentally, resonators having top electrodes with different coverage ratios (0.75, 0.5, 0.25) and materials (Au, Pt, Al), but identical vibrating body (made out of AlN) and anchor design have been fabricated and tested. Moreover, resonators having distinct electrode metals are measured under different temperature conditions ranging from 50 to 300 K. All the experiments follow the predicted trend, which confirm that TED can be considered as the main source of intrinsic material damping in AlN CMRs and the dominant damping mechanism when anchor losses are mitigated. [2016-0189]

[1]  J. Lahann,et al.  Fully monolithic CMOS nickel micromechanical resonator oscillator , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[2]  Damping in 1 GHz laterally-vibrating composite piezoelectric resonators , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[3]  A. Mioduchowski,et al.  Thermoelastic dissipation of hollow micromechanical resonators , 2010 .

[4]  Gianluca Piazza,et al.  Analytical and Numerical Methods to Model Anchor Losses in 65-MHz AlN Contour Mode Resonators , 2016, Journal of Microelectromechanical Systems.

[5]  Gianluca Piazza,et al.  Segmented electrode excitation of aluminum nitride contour mode resonators to optimize the device figure of merit , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[6]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[7]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[8]  M. Rinaldi,et al.  Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems. , 2015, Nano letters.

[9]  J. Bishop,et al.  ELASTOTHERMODYNAMIC DAMPING IN COMPOSITE MATERIALS , 1994 .

[10]  Yuxin Sun,et al.  Thermoelastic damping in micro-scale circular plate resonators , 2010 .

[11]  Clark T.-C. Nguyen,et al.  Vibrating RF MEMS for next generation wireless applications , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[12]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[13]  C. Zener Elasticity and anelasticity of metals , 1948 .

[14]  Gianluca Piazza,et al.  Multifrequency Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology , 2010, Journal of Microelectromechanical Systems.

[15]  R. K. Kirby Platinum—A thermal expansion reference material , 1991 .

[16]  Chengjie Zuo,et al.  Super-high-frequency two-port AlN contour-mode resonators for RF applications , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  G. Piazza,et al.  Reduction of anchor losses by etched slots in aluminum nitride contour mode resonators , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[18]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[19]  Gianluca Piazza,et al.  One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators for Mechanical Signal Processing , 2007 .

[20]  G. Piazza,et al.  Anchor Losses in AlN Contour Mode Resonators , 2015, Journal of Microelectromechanical Systems.

[21]  Young-Ho Na,et al.  Thermoelastic damping effect on in-extensional vibration of rotating thin ring , 2010 .

[22]  G. Fedder Integrated MEMS in Conventional CMOS , 1998 .

[23]  A. G. Prodell,et al.  Brookhaven National Laboratory selected cryogenic data notebook: Volume 1, Sections 1-9 , 1980 .

[24]  R. Plana,et al.  A 5 GHz above-IC FBAR low phase noise balanced oscillator , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[25]  Zhili Hao,et al.  An analytical study on interfacial dissipation in piezoelectric rectangular block resonators with in-plane longitudinal-mode vibrations , 2010 .

[26]  C. Zener INTERNAL FRICTION IN SOLIDS II. GENERAL THEORY OF THERMOELASTIC INTERNAL FRICTION , 1938 .

[27]  Y. D. Sharma,et al.  Modeling of thermoelastic damping and frequency shift of vibrations in a transversely isotropic solid cylinder , 2011 .

[28]  Bo Wang,et al.  Poly-SiGe-Based MEMS Thin-Film Encapsulation , 2012, Journal of Microelectromechanical Systems.

[29]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[30]  Massimiliano Cremonesi,et al.  Analysis of anchor and interface losses in piezoelectric MEMS resonators , 2013 .

[31]  G. T. Furukawa,et al.  Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold from 0 to 300 K, , 1968 .

[32]  K. Lücke Ultrasonic Attenuation Caused by Thermoelastic Heat Flow , 1956 .

[33]  Gianluca Piazza,et al.  Quality Factor Dependence on the Inactive Regions in AlN Contour-Mode Resonators , 2015, Journal of microelectromechanical systems.